Metamath Proof Explorer


Theorem elpq

Description: A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022)

Ref Expression
Assertion elpq A0<AxyA=xy

Proof

Step Hyp Ref Expression
1 elq AzyA=zy
2 rexcom zyA=zyyzA=zy
3 1 2 bitri AyzA=zy
4 breq2 A=zy0<A0<zy
5 zre zz
6 5 adantl yzz
7 nnre yy
8 7 adantr yzy
9 nngt0 y0<y
10 9 adantr yz0<y
11 gt0div zy0<y0<z0<zy
12 6 8 10 11 syl3anc yz0<z0<zy
13 12 bicomd yz0<zy0<z
14 4 13 sylan9bb A=zyyz0<A0<z
15 elnnz zz0<z
16 15 simplbi2 z0<zz
17 16 adantl yz0<zz
18 17 adantl A=zyyz0<zz
19 18 imp A=zyyz0<zz
20 oveq1 x=zxy=zy
21 20 eqeq2d x=zA=xyA=zy
22 21 adantl A=zyyz0<zx=zA=xyA=zy
23 simpll A=zyyz0<zA=zy
24 19 22 23 rspcedvd A=zyyz0<zxA=xy
25 24 ex A=zyyz0<zxA=xy
26 14 25 sylbid A=zyyz0<AxA=xy
27 26 ex A=zyyz0<AxA=xy
28 27 com13 0<AyzA=zyxA=xy
29 28 impl 0<AyzA=zyxA=xy
30 29 rexlimdva 0<AyzA=zyxA=xy
31 30 reximdva 0<AyzA=zyyxA=xy
32 3 31 biimtrid 0<AAyxA=xy
33 32 impcom A0<AyxA=xy
34 rexcom xyA=xyyxA=xy
35 33 34 sylibr A0<AxyA=xy