Description: A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | elpq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq | |
|
2 | rexcom | |
|
3 | 1 2 | bitri | |
4 | breq2 | |
|
5 | zre | |
|
6 | 5 | adantl | |
7 | nnre | |
|
8 | 7 | adantr | |
9 | nngt0 | |
|
10 | 9 | adantr | |
11 | gt0div | |
|
12 | 6 8 10 11 | syl3anc | |
13 | 12 | bicomd | |
14 | 4 13 | sylan9bb | |
15 | elnnz | |
|
16 | 15 | simplbi2 | |
17 | 16 | adantl | |
18 | 17 | adantl | |
19 | 18 | imp | |
20 | oveq1 | |
|
21 | 20 | eqeq2d | |
22 | 21 | adantl | |
23 | simpll | |
|
24 | 19 22 23 | rspcedvd | |
25 | 24 | ex | |
26 | 14 25 | sylbid | |
27 | 26 | ex | |
28 | 27 | com13 | |
29 | 28 | impl | |
30 | 29 | rexlimdva | |
31 | 30 | reximdva | |
32 | 3 31 | biimtrid | |
33 | 32 | impcom | |
34 | rexcom | |
|
35 | 33 34 | sylibr | |