| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elq |
|
| 2 |
|
rexcom |
|
| 3 |
1 2
|
bitri |
|
| 4 |
|
breq2 |
|
| 5 |
|
zre |
|
| 6 |
5
|
adantl |
|
| 7 |
|
nnre |
|
| 8 |
7
|
adantr |
|
| 9 |
|
nngt0 |
|
| 10 |
9
|
adantr |
|
| 11 |
|
gt0div |
|
| 12 |
6 8 10 11
|
syl3anc |
|
| 13 |
12
|
bicomd |
|
| 14 |
4 13
|
sylan9bb |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
eqeq2d |
|
| 17 |
|
elnnz |
|
| 18 |
17
|
simplbi2 |
|
| 19 |
18
|
adantl |
|
| 20 |
19
|
adantl |
|
| 21 |
20
|
imp |
|
| 22 |
|
simpll |
|
| 23 |
16 21 22
|
rspcedvdw |
|
| 24 |
23
|
ex |
|
| 25 |
14 24
|
sylbid |
|
| 26 |
25
|
ex |
|
| 27 |
26
|
com13 |
|
| 28 |
27
|
impl |
|
| 29 |
28
|
rexlimdva |
|
| 30 |
29
|
reximdva |
|
| 31 |
3 30
|
biimtrid |
|
| 32 |
31
|
impcom |
|
| 33 |
|
rexcom |
|
| 34 |
32 33
|
sylibr |
|