Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Reflexivity
elrefrels3
Next ⟩
elrefrelsrel
Metamath Proof Explorer
Ascii
Unicode
Theorem
elrefrels3
Description:
Element of the class of reflexive relations.
(Contributed by
Peter Mazsa
, 23-Jul-2019)
Ref
Expression
Assertion
elrefrels3
⊢
R
∈
RefRels
↔
∀
x
∈
dom
⁡
R
∀
y
∈
ran
⁡
R
x
=
y
→
x
R
y
∧
R
∈
Rels
Proof
Step
Hyp
Ref
Expression
1
dfrefrels3
⊢
RefRels
=
r
∈
Rels
|
∀
x
∈
dom
⁡
r
∀
y
∈
ran
⁡
r
x
=
y
→
x
r
y
2
dmeq
⊢
r
=
R
→
dom
⁡
r
=
dom
⁡
R
3
rneq
⊢
r
=
R
→
ran
⁡
r
=
ran
⁡
R
4
breq
⊢
r
=
R
→
x
r
y
↔
x
R
y
5
4
imbi2d
⊢
r
=
R
→
x
=
y
→
x
r
y
↔
x
=
y
→
x
R
y
6
3
5
raleqbidv
⊢
r
=
R
→
∀
y
∈
ran
⁡
r
x
=
y
→
x
r
y
↔
∀
y
∈
ran
⁡
R
x
=
y
→
x
R
y
7
2
6
raleqbidv
⊢
r
=
R
→
∀
x
∈
dom
⁡
r
∀
y
∈
ran
⁡
r
x
=
y
→
x
r
y
↔
∀
x
∈
dom
⁡
R
∀
y
∈
ran
⁡
R
x
=
y
→
x
R
y
8
1
7
rabeqel
⊢
R
∈
RefRels
↔
∀
x
∈
dom
⁡
R
∀
y
∈
ran
⁡
R
x
=
y
→
x
R
y
∧
R
∈
Rels