Metamath Proof Explorer


Theorem elrefrels3

Description: Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019)

Ref Expression
Assertion elrefrels3 R RefRels x dom R y ran R x = y x R y R Rels

Proof

Step Hyp Ref Expression
1 dfrefrels3 RefRels = r Rels | x dom r y ran r x = y x r y
2 dmeq r = R dom r = dom R
3 rneq r = R ran r = ran R
4 breq r = R x r y x R y
5 4 imbi2d r = R x = y x r y x = y x R y
6 3 5 raleqbidv r = R y ran r x = y x r y y ran R x = y x R y
7 2 6 raleqbidv r = R x dom r y ran r x = y x r y x dom R y ran R x = y x R y
8 1 7 rabeqel R RefRels x dom R y ran R x = y x R y R Rels