Metamath Proof Explorer


Theorem elrelscnveq4

Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021)

Ref Expression
Assertion elrelscnveq4 RRelsR-1RxyxRyyRx

Proof

Step Hyp Ref Expression
1 elrelscnveq RRelsR-1RR-1=R
2 elrelscnveq2 RRelsR-1=RxyxRyyRx
3 1 2 bitrd RRelsR-1RxyxRyyRx