Metamath Proof Explorer


Theorem elrelscnveq2

Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021)

Ref Expression
Assertion elrelscnveq2 RRelsR-1=RxyxRyyRx

Proof

Step Hyp Ref Expression
1 cnvsym R-1RxyxRyyRx
2 1 a1i RRelsR-1RxyxRyyRx
3 elrelsrelim RRelsRelR
4 dfrel2 RelRR-1-1=R
5 3 4 sylib RRelsR-1-1=R
6 5 sseq1d RRelsR-1-1R-1RR-1
7 cnvsym R-1-1R-1xyxR-1yyR-1x
8 6 7 bitr3di RRelsRR-1xyxR-1yyR-1x
9 relbrcnvg RelRxR-1yyRx
10 3 9 syl RRelsxR-1yyRx
11 relbrcnvg RelRyR-1xxRy
12 3 11 syl RRelsyR-1xxRy
13 10 12 imbi12d RRelsxR-1yyR-1xyRxxRy
14 13 2albidv RRelsxyxR-1yyR-1xxyyRxxRy
15 8 14 bitrd RRelsRR-1xyyRxxRy
16 2 15 anbi12d RRelsR-1RRR-1xyxRyyRxxyyRxxRy
17 eqss R-1=RR-1RRR-1
18 2albiim xyxRyyRxxyxRyyRxxyyRxxRy
19 16 17 18 3bitr4g RRelsR-1=RxyxRyyRx