Metamath Proof Explorer


Theorem elrn3

Description: Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017)

Ref Expression
Assertion elrn3 A ran B B V × A

Proof

Step Hyp Ref Expression
1 df-rn ran B = dom B -1
2 1 eleq2i A ran B A dom B -1
3 eldm3 A dom B -1 B -1 A
4 cnvxp V × A -1 = A × V
5 4 ineq2i B -1 V × A -1 = B -1 A × V
6 cnvin B V × A -1 = B -1 V × A -1
7 df-res B -1 A = B -1 A × V
8 5 6 7 3eqtr4ri B -1 A = B V × A -1
9 8 eqeq1i B -1 A = B V × A -1 =
10 relinxp Rel B V × A
11 cnveq0 Rel B V × A B V × A = B V × A -1 =
12 10 11 ax-mp B V × A = B V × A -1 =
13 9 12 bitr4i B -1 A = B V × A =
14 13 necon3bii B -1 A B V × A
15 2 3 14 3bitri A ran B B V × A