Metamath Proof Explorer


Theorem elrn3

Description: Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017)

Ref Expression
Assertion elrn3 AranBBV×A

Proof

Step Hyp Ref Expression
1 df-rn ranB=domB-1
2 1 eleq2i AranBAdomB-1
3 eldm3 AdomB-1B-1A
4 cnvxp V×A-1=A×V
5 4 ineq2i B-1V×A-1=B-1A×V
6 cnvin BV×A-1=B-1V×A-1
7 df-res B-1A=B-1A×V
8 5 6 7 3eqtr4ri B-1A=BV×A-1
9 8 eqeq1i B-1A=BV×A-1=
10 relinxp RelBV×A
11 cnveq0 RelBV×ABV×A=BV×A-1=
12 10 11 ax-mp BV×A=BV×A-1=
13 9 12 bitr4i B-1A=BV×A=
14 13 necon3bii B-1ABV×A
15 2 3 14 3bitri AranBBV×A