Metamath Proof Explorer


Theorem elrnmpog

Description: Membership in the range of an operation class abstraction. (Contributed by NM, 27-Aug-2007) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis rngop.1 F=xA,yBC
Assertion elrnmpog DVDranFxAyBD=C

Proof

Step Hyp Ref Expression
1 rngop.1 F=xA,yBC
2 eqeq1 z=Dz=CD=C
3 2 2rexbidv z=DxAyBz=CxAyBD=C
4 1 rnmpo ranF=z|xAyBz=C
5 3 4 elab2g DVDranFxAyBD=C