Metamath Proof Explorer


Theorem elrnrexdm

Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017)

Ref Expression
Assertion elrnrexdm FunFYranFxdomFY=Fx

Proof

Step Hyp Ref Expression
1 eqidd YranFY=Y
2 1 ancli YranFYranFY=Y
3 2 adantl FunFYranFYranFY=Y
4 eqeq2 y=YY=yY=Y
5 4 rspcev YranFY=YyranFY=y
6 3 5 syl FunFYranFyranFY=y
7 6 ex FunFYranFyranFY=y
8 funfn FunFFFndomF
9 eqeq2 y=FxY=yY=Fx
10 9 rexrn FFndomFyranFY=yxdomFY=Fx
11 8 10 sylbi FunFyranFY=yxdomFY=Fx
12 7 11 sylibd FunFYranFxdomFY=Fx