Metamath Proof Explorer


Theorem elsigagen2

Description: Any countable union of elements of a set is also in the sigma-algebra that set generates. (Contributed by Thierry Arnoux, 17-Sep-2017)

Ref Expression
Assertion elsigagen2 A V B A B ω B 𝛔 A

Proof

Step Hyp Ref Expression
1 simp1 A V B A B ω A V
2 1 sgsiga A V B A B ω 𝛔 A ran sigAlgebra
3 sssigagen A V A 𝛔 A
4 sspw A 𝛔 A 𝒫 A 𝒫 𝛔 A
5 1 3 4 3syl A V B A B ω 𝒫 A 𝒫 𝛔 A
6 simp2 A V B A B ω B A
7 simp3 A V B A B ω B ω
8 ctex B ω B V
9 elpwg B V B 𝒫 A B A
10 7 8 9 3syl A V B A B ω B 𝒫 A B A
11 6 10 mpbird A V B A B ω B 𝒫 A
12 5 11 sseldd A V B A B ω B 𝒫 𝛔 A
13 sigaclcu 𝛔 A ran sigAlgebra B 𝒫 𝛔 A B ω B 𝛔 A
14 2 12 7 13 syl3anc A V B A B ω B 𝛔 A