Metamath Proof Explorer


Theorem eltg2b

Description: Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014) (Revised by Mario Carneiro, 10-Jan-2015)

Ref Expression
Assertion eltg2b BVAtopGenBxAyBxyyA

Proof

Step Hyp Ref Expression
1 eltg2 BVAtopGenBABxAyBxyyA
2 simpl xyyAxy
3 2 reximi yBxyyAyBxy
4 eluni2 xByBxy
5 3 4 sylibr yBxyyAxB
6 5 ralimi xAyBxyyAxAxB
7 dfss3 ABxAxB
8 6 7 sylibr xAyBxyyAAB
9 8 pm4.71ri xAyBxyyAABxAyBxyyA
10 1 9 bitr4di BVAtopGenBxAyBxyyA