Metamath Proof Explorer


Theorem eltg4i

Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion eltg4i AtopGenBA=B𝒫A

Proof

Step Hyp Ref Expression
1 elfvdm AtopGenBBdomtopGen
2 eltg BdomtopGenAtopGenBAB𝒫A
3 1 2 syl AtopGenBAtopGenBAB𝒫A
4 3 ibi AtopGenBAB𝒫A
5 inss2 B𝒫A𝒫A
6 5 unissi B𝒫A𝒫A
7 unipw 𝒫A=A
8 6 7 sseqtri B𝒫AA
9 8 a1i AtopGenBB𝒫AA
10 4 9 eqssd AtopGenBA=B𝒫A