Metamath Proof Explorer


Theorem eltpsg

Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypothesis eltpsi.k K=BasendxATopSetndxJ
Assertion eltpsg JTopOnAKTopSp

Proof

Step Hyp Ref Expression
1 eltpsi.k K=BasendxATopSetndxJ
2 basendxlttsetndx Basendx<TopSetndx
3 tsetndxnn TopSetndx
4 tsetid TopSet=SlotTopSetndx
5 1 2 3 4 2strop1 JTopOnAJ=TopSetK
6 toponmax JTopOnAAJ
7 1 2 3 2strbas1 AJA=BaseK
8 6 7 syl JTopOnAA=BaseK
9 8 fveq2d JTopOnATopOnA=TopOnBaseK
10 5 9 eleq12d JTopOnAJTopOnATopSetKTopOnBaseK
11 10 ibi JTopOnATopSetKTopOnBaseK
12 eqid BaseK=BaseK
13 eqid TopSetK=TopSetK
14 12 13 tsettps TopSetKTopOnBaseKKTopSp
15 11 14 syl JTopOnAKTopSp