Metamath Proof Explorer


Theorem eltpsi

Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses eltpsi.k K=BasendxATopSetndxJ
eltpsi.u A=J
eltpsi.j JTop
Assertion eltpsi KTopSp

Proof

Step Hyp Ref Expression
1 eltpsi.k K=BasendxATopSetndxJ
2 eltpsi.u A=J
3 eltpsi.j JTop
4 2 toptopon JTopJTopOnA
5 3 4 mpbi JTopOnA
6 1 eltpsg JTopOnAKTopSp
7 5 6 ax-mp KTopSp