Metamath Proof Explorer


Theorem eltrrels3

Description: Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021)

Ref Expression
Assertion eltrrels3 RTrRelsxyzxRyyRzxRzRRels

Proof

Step Hyp Ref Expression
1 dftrrels3 TrRels=rRels|xyzxryyrzxrz
2 breq r=RxryxRy
3 breq r=RyrzyRz
4 2 3 anbi12d r=RxryyrzxRyyRz
5 breq r=RxrzxRz
6 4 5 imbi12d r=RxryyrzxrzxRyyRzxRz
7 6 2albidv r=RyzxryyrzxrzyzxRyyRzxRz
8 7 albidv r=RxyzxryyrzxrzxyzxRyyRzxRz
9 1 8 rabeqel RTrRelsxyzxRyyRzxRzRRels