Metamath Proof Explorer


Theorem elunirn2OLD

Description: Obsolete version of elfvunirn as of 12-Jan-2025. (Contributed by Thierry Arnoux, 13-Nov-2016) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion elunirn2OLD FunFBFABranF

Proof

Step Hyp Ref Expression
1 elfvdm BFAAdomF
2 fveq2 x=AFx=FA
3 2 eleq2d x=ABFxBFA
4 3 rspcev AdomFBFAxdomFBFx
5 1 4 mpancom BFAxdomFBFx
6 5 adantl FunFBFAxdomFBFx
7 elunirn FunFBranFxdomFBFx
8 7 adantr FunFBFABranFxdomFBFx
9 6 8 mpbird FunFBFABranF