Metamath Proof Explorer


Theorem eluzaddiOLD

Description: Obsolete version of eluzaddi as of 7-Feb-2025. (Contributed by Paul Chapman, 22-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eluzsubi.1 M
eluzsubi.2 K
Assertion eluzaddiOLD NMN+KM+K

Proof

Step Hyp Ref Expression
1 eluzsubi.1 M
2 eluzsubi.2 K
3 eluzelz NMN
4 zaddcl NKN+K
5 3 2 4 sylancl NMN+K
6 1 eluz1i NMNMN
7 zre NN
8 1 zrei M
9 2 zrei K
10 leadd1 MNKMNM+KN+K
11 8 9 10 mp3an13 NMNM+KN+K
12 7 11 syl NMNM+KN+K
13 12 biimpa NMNM+KN+K
14 6 13 sylbi NMM+KN+K
15 zaddcl MKM+K
16 1 2 15 mp2an M+K
17 16 eluz1i N+KM+KN+KM+KN+K
18 5 14 17 sylanbrc NMN+KM+K