Metamath Proof Explorer


Theorem eluzmn

Description: Membership in an earlier upper set of integers. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Assertion eluzmn M N 0 M M N

Proof

Step Hyp Ref Expression
1 simpl M N 0 M
2 simpr M N 0 N 0
3 2 nn0zd M N 0 N
4 1 3 zsubcld M N 0 M N
5 1 zred M N 0 M
6 2 nn0red M N 0 N
7 5 6 readdcld M N 0 M + N
8 nn0addge1 M N 0 M M + N
9 5 8 sylancom M N 0 M M + N
10 5 7 6 9 lesub1dd M N 0 M N M + N - N
11 5 recnd M N 0 M
12 6 recnd M N 0 N
13 11 12 pncand M N 0 M + N - N = M
14 10 13 breqtrd M N 0 M N M
15 eluz2 M M N M N M M N M
16 4 1 14 15 syl3anbrc M N 0 M M N