Metamath Proof Explorer


Theorem eluzmn

Description: Membership in an earlier upper set of integers. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Assertion eluzmn MN0MMN

Proof

Step Hyp Ref Expression
1 simpl MN0M
2 simpr MN0N0
3 2 nn0zd MN0N
4 1 3 zsubcld MN0MN
5 1 zred MN0M
6 2 nn0red MN0N
7 5 6 readdcld MN0M+N
8 nn0addge1 MN0MM+N
9 5 8 sylancom MN0MM+N
10 5 7 6 9 lesub1dd MN0MNM+N-N
11 5 recnd MN0M
12 6 recnd MN0N
13 11 12 pncand MN0M+N-N=M
14 10 13 breqtrd MN0MNM
15 eluz2 MMNMNMMNM
16 4 1 14 15 syl3anbrc MN0MMN