Metamath Proof Explorer


Theorem en0ALT

Description: Shorter proof of en0 , depending on ax-pow and ax-un . (Contributed by NM, 27-May-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion en0ALT AA=

Proof

Step Hyp Ref Expression
1 bren Aff:A1-1 onto
2 f1ocnv f:A1-1 ontof-1:1-1 ontoA
3 f1o00 f-1:1-1 ontoAf-1=A=
4 3 simprbi f-1:1-1 ontoAA=
5 2 4 syl f:A1-1 ontoA=
6 5 exlimiv ff:A1-1 ontoA=
7 1 6 sylbi AA=
8 0ex V
9 8 enref
10 breq1 A=A
11 9 10 mpbiri A=A
12 7 11 impbii AA=