Metamath Proof Explorer


Theorem en2sn

Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003) Avoid ax-pow . (Revised by BTernaryTau, 31-Jul-2024) Avoid ax-un . (Revised by BTernaryTau, 25-Sep-2024)

Ref Expression
Assertion en2sn ACBDAB

Proof

Step Hyp Ref Expression
1 snex ABV
2 f1osng ACBDAB:A1-1 ontoB
3 f1oeq1 f=ABf:A1-1 ontoBAB:A1-1 ontoB
4 3 spcegv ABVAB:A1-1 ontoBff:A1-1 ontoB
5 1 2 4 mpsyl ACBDff:A1-1 ontoB
6 snex AV
7 snex BV
8 breng AVBVABff:A1-1 ontoB
9 6 7 8 mp2an ABff:A1-1 ontoB
10 5 9 sylibr ACBDAB