Metamath Proof Explorer


Theorem en2snOLD

Description: Obsolete version of en2sn as of 25-Sep-2024. (Contributed by NM, 9-Nov-2003) Avoid ax-pow . (Revised by BTernaryTau, 31-Jul-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion en2snOLD ACBDAB

Proof

Step Hyp Ref Expression
1 snex ABV
2 f1osng ACBDAB:A1-1 ontoB
3 f1oeq1 f=ABf:A1-1 ontoBAB:A1-1 ontoB
4 3 spcegv ABVAB:A1-1 ontoBff:A1-1 ontoB
5 1 2 4 mpsyl ACBDff:A1-1 ontoB
6 bren ABff:A1-1 ontoB
7 5 6 sylibr ACBDAB