Metamath Proof Explorer


Theorem en3lplem2VD

Description: Virtual deduction proof of en3lplem2 . (Contributed by Alan Sare, 24-Oct-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion en3lplem2VD ABBCCAxABCyyABCyx

Proof

Step Hyp Ref Expression
1 idn1 ABBCCAABBCCA
2 idn3 ABBCCA,xABC,x=Ax=A
3 en3lplem1VD ABBCCAx=AyyABCyx
4 1 2 3 e13 ABBCCA,xABC,x=AyyABCyx
5 4 in3 ABBCCA,xABCx=AyyABCyx
6 3anrot ABBCCABCCAAB
7 1 6 e1bi ABBCCABCCAAB
8 idn3 ABBCCA,xABC,x=Bx=B
9 en3lplem1VD BCCAABx=ByyBCAyx
10 7 8 9 e13 ABBCCA,xABC,x=ByyBCAyx
11 tprot ABC=BCA
12 11 eleq2i yABCyBCA
13 12 anbi1i yABCyxyBCAyx
14 13 exbii yyABCyxyyBCAyx
15 10 14 e3bir ABBCCA,xABC,x=ByyABCyx
16 15 in3 ABBCCA,xABCx=ByyABCyx
17 jao x=AyyABCyxx=ByyABCyxx=Ax=ByyABCyx
18 5 16 17 e22 ABBCCA,xABCx=Ax=ByyABCyx
19 3anrot CAABBCABBCCA
20 1 19 e1bir ABBCCACAABBC
21 idn3 ABBCCA,xABC,x=Cx=C
22 en3lplem1VD CAABBCx=CyyCAByx
23 20 21 22 e13 ABBCCA,xABC,x=CyyCAByx
24 tprot CAB=ABC
25 24 eleq2i yCAByABC
26 25 anbi1i yCAByxyABCyx
27 26 exbii yyCAByxyyABCyx
28 23 27 e3bi ABBCCA,xABC,x=CyyABCyx
29 28 in3 ABBCCA,xABCx=CyyABCyx
30 idn2 ABBCCA,xABCxABC
31 dftp2 ABC=x|x=Ax=Bx=C
32 31 eleq2i xABCxx|x=Ax=Bx=C
33 30 32 e2bi ABBCCA,xABCxx|x=Ax=Bx=C
34 abid xx|x=Ax=Bx=Cx=Ax=Bx=C
35 33 34 e2bi ABBCCA,xABCx=Ax=Bx=C
36 df-3or x=Ax=Bx=Cx=Ax=Bx=C
37 35 36 e2bi ABBCCA,xABCx=Ax=Bx=C
38 jao x=Ax=ByyABCyxx=CyyABCyxx=Ax=Bx=CyyABCyx
39 18 29 37 38 e222 ABBCCA,xABCyyABCyx
40 39 in2 ABBCCAxABCyyABCyx
41 40 in1 ABBCCAxABCyyABCyx