Metamath Proof Explorer


Theorem endjudisj

Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by NM, 5-Apr-2007)

Ref Expression
Assertion endjudisj AVBWAB=A⊔︀BAB

Proof

Step Hyp Ref Expression
1 df-dju A⊔︀B=×A1𝑜×B
2 0ex V
3 xpsnen2g VAV×AA
4 2 3 mpan AV×AA
5 1on 1𝑜On
6 xpsnen2g 1𝑜OnBW1𝑜×BB
7 5 6 mpan BW1𝑜×BB
8 4 7 anim12i AVBW×AA1𝑜×BB
9 xp01disjl ×A1𝑜×B=
10 9 jctl AB=×A1𝑜×B=AB=
11 unen ×AA1𝑜×BB×A1𝑜×B=AB=×A1𝑜×BAB
12 8 10 11 syl2an AVBWAB=×A1𝑜×BAB
13 12 3impa AVBWAB=×A1𝑜×BAB
14 1 13 eqbrtrid AVBWAB=A⊔︀BAB