Metamath Proof Explorer


Theorem enrex

Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995) (New usage is discouraged.)

Ref Expression
Assertion enrex ~𝑹V

Proof

Step Hyp Ref Expression
1 npex 𝑷V
2 1 1 xpex 𝑷×𝑷V
3 2 2 xpex 𝑷×𝑷×𝑷×𝑷V
4 df-enr ~𝑹=xy|x𝑷×𝑷y𝑷×𝑷zwvux=zwy=vuz+𝑷u=w+𝑷v
5 opabssxp xy|x𝑷×𝑷y𝑷×𝑷zwvux=zwy=vuz+𝑷u=w+𝑷v𝑷×𝑷×𝑷×𝑷
6 4 5 eqsstri ~𝑹𝑷×𝑷×𝑷×𝑷
7 3 6 ssexi ~𝑹V