Metamath Proof Explorer


Theorem entrfi

Description: Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr ). (Contributed by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion entrfi BFinABBCAC

Proof

Step Hyp Ref Expression
1 enfii BFinABAFin
2 1 3adant3 BFinABBCAFin
3 entrfil AFinABBCAC
4 2 3 syld3an1 BFinABBCAC