Metamath Proof Explorer


Theorem epnsym

Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022)

Ref Expression
Assertion epnsym E-1E

Proof

Step Hyp Ref Expression
1 cnvepnep E-1E=
2 disjeq0 E-1E=E-1=EE-1=E=
3 epn0 E
4 eqneqall E=EE-1E
5 3 4 mpi E=E-1E
6 5 adantl E-1=E=E-1E
7 6 a1i E-1=EE-1=E=E-1E
8 neqne ¬E-1=EE-1E
9 8 a1d ¬E-1=E¬E-1=E=E-1E
10 7 9 bija E-1=EE-1=E=E-1E
11 1 2 10 mp2b E-1E