Metamath Proof Explorer


Theorem eq0rdv

Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014) Avoid ax-8 , df-clel . (Revised by GG, 6-Sep-2024)

Ref Expression
Hypothesis eq0rdv.1 φ ¬ x A
Assertion eq0rdv φ A =

Proof

Step Hyp Ref Expression
1 eq0rdv.1 φ ¬ x A
2 1 alrimiv φ x ¬ x A
3 biidd y = x
4 3 eqabbw A = y | x x A
5 dfnul4 = y |
6 5 eqeq2i A = A = y |
7 nbfal ¬ x A x A
8 7 albii x ¬ x A x x A
9 4 6 8 3bitr4ri x ¬ x A A =
10 2 9 sylib φ A =