Metamath Proof Explorer


Theorem eq0rdv

Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014) Avoid ax-8 , df-clel . (Revised by Gino Giotto, 6-Sep-2024)

Ref Expression
Hypothesis eq0rdv.1 φ¬xA
Assertion eq0rdv φA=

Proof

Step Hyp Ref Expression
1 eq0rdv.1 φ¬xA
2 1 alrimiv φx¬xA
3 dfnul4 =y|
4 3 eqeq2i A=A=y|
5 dfcleq A=y|xxAxy|
6 df-clab xy|xy
7 sbv xy
8 6 7 bitri xy|
9 8 bibi2i xAxy|xA
10 9 albii xxAxy|xxA
11 nbfal ¬xAxA
12 11 bicomi xA¬xA
13 12 albii xxAx¬xA
14 10 13 bitri xxAxy|x¬xA
15 4 5 14 3bitrri x¬xAA=
16 2 15 sylib φA=