Metamath Proof Explorer


Theorem eqeltrdi

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqeltrdi.1 φA=B
eqeltrdi.2 BC
Assertion eqeltrdi φAC

Proof

Step Hyp Ref Expression
1 eqeltrdi.1 φA=B
2 eqeltrdi.2 BC
3 2 a1i φBC
4 1 3 eqeltrd φAC