Metamath Proof Explorer


Theorem eqeu

Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009)

Ref Expression
Hypothesis eqeu.1 x=Aφψ
Assertion eqeu ABψxφx=A∃!xφ

Proof

Step Hyp Ref Expression
1 eqeu.1 x=Aφψ
2 1 spcegv ABψxφ
3 2 imp ABψxφ
4 3 3adant3 ABψxφx=Axφ
5 eqeq2 y=Ax=yx=A
6 5 imbi2d y=Aφx=yφx=A
7 6 albidv y=Axφx=yxφx=A
8 7 spcegv ABxφx=Ayxφx=y
9 8 imp ABxφx=Ayxφx=y
10 9 3adant2 ABψxφx=Ayxφx=y
11 eu3v ∃!xφxφyxφx=y
12 4 10 11 sylanbrc ABψxφx=A∃!xφ