Metamath Proof Explorer


Theorem eqfnovd

Description: Deduction for equality of operations. (Contributed by Zhi Wang, 19-Nov-2025)

Ref Expression
Hypotheses eqfnovd.1 φ F Fn A × B
eqfnovd.2 φ G Fn A × B
eqfnovd.3 φ x A y B x F y = x G y
Assertion eqfnovd φ F = G

Proof

Step Hyp Ref Expression
1 eqfnovd.1 φ F Fn A × B
2 eqfnovd.2 φ G Fn A × B
3 eqfnovd.3 φ x A y B x F y = x G y
4 3 ralrimivva φ x A y B x F y = x G y
5 eqfnov2 F Fn A × B G Fn A × B F = G x A y B x F y = x G y
6 1 2 5 syl2anc φ F = G x A y B x F y = x G y
7 4 6 mpbird φ F = G