Metamath Proof Explorer


Theorem eqg0subgecsn

Description: The equivalence classes modulo the coset equivalence relation for the trivial (zero) subgroup of a group are singletons. (Contributed by AV, 26-Feb-2025)

Ref Expression
Hypotheses eqg0subg.0 0˙=0G
eqg0subg.s S=0˙
eqg0subg.b B=BaseG
eqg0subg.r R=G~QGS
Assertion eqg0subgecsn GGrpXBXR=X

Proof

Step Hyp Ref Expression
1 eqg0subg.0 0˙=0G
2 eqg0subg.s S=0˙
3 eqg0subg.b B=BaseG
4 eqg0subg.r R=G~QGS
5 df-ec XR=RX
6 1 2 3 4 eqg0subg GGrpR=IB
7 6 adantr GGrpXBR=IB
8 7 imaeq1d GGrpXBRX=IBX
9 snssi XBXB
10 9 adantl GGrpXBXB
11 resima2 XBIBX=IX
12 10 11 syl GGrpXBIBX=IX
13 imai IX=X
14 12 13 eqtrdi GGrpXBIBX=X
15 8 14 eqtrd GGrpXBRX=X
16 5 15 eqtrid GGrpXBXR=X