Description: The equivalence classes modulo the coset equivalence relation for the trivial (zero) subgroup of a group are singletons. (Contributed by AV, 26-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqg0subg.0 | |
|
eqg0subg.s | |
||
eqg0subg.b | |
||
eqg0subg.r | |
||
Assertion | eqg0subgecsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqg0subg.0 | |
|
2 | eqg0subg.s | |
|
3 | eqg0subg.b | |
|
4 | eqg0subg.r | |
|
5 | df-ec | |
|
6 | 1 2 3 4 | eqg0subg | |
7 | 6 | adantr | |
8 | 7 | imaeq1d | |
9 | snssi | |
|
10 | 9 | adantl | |
11 | resima2 | |
|
12 | 10 11 | syl | |
13 | imai | |
|
14 | 12 13 | eqtrdi | |
15 | 8 14 | eqtrd | |
16 | 5 15 | eqtrid | |