Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007) (Proof shortened by JJ, 23-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqsn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | ||
| 2 | biorf | ||
| 3 | 1 2 | sylbi | |
| 4 | dfss3 | ||
| 5 | sssn | ||
| 6 | velsn | ||
| 7 | 6 | ralbii | |
| 8 | 4 5 7 | 3bitr3i | |
| 9 | 3 8 | bitrdi |