Description: Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqsnd.1 | ||
eqsnd.2 | |||
Assertion | eqsnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsnd.1 | ||
2 | eqsnd.2 | ||
3 | simpr | ||
4 | 2 | adantr | |
5 | 3 4 | eqeltrd | |
6 | 1 5 | impbida | |
7 | velsn | ||
8 | 6 7 | bitr4di | |
9 | 8 | eqrdv |