Metamath Proof Explorer


Theorem eqtr4d

Description: An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995)

Ref Expression
Hypotheses eqtr4d.1 φA=B
eqtr4d.2 φC=B
Assertion eqtr4d φA=C

Proof

Step Hyp Ref Expression
1 eqtr4d.1 φA=B
2 eqtr4d.2 φC=B
3 2 eqcomd φB=C
4 1 3 eqtrd φA=C