Metamath Proof Explorer


Theorem eqtrdi

Description: An equality transitivity deduction. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypotheses eqtrdi.1 φA=B
eqtrdi.2 B=C
Assertion eqtrdi φA=C

Proof

Step Hyp Ref Expression
1 eqtrdi.1 φA=B
2 eqtrdi.2 B=C
3 2 a1i φB=C
4 1 3 eqtrd φA=C