Metamath Proof Explorer


Theorem eqvrelthi

Description: Basic property of equivalence relations. Part of Lemma 3N of Enderton p. 57. (Contributed by NM, 30-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvrelthi.1 φEqvRelR
eqvrelthi.2 φARB
Assertion eqvrelthi φAR=BR

Proof

Step Hyp Ref Expression
1 eqvrelthi.1 φEqvRelR
2 eqvrelthi.2 φARB
3 1 2 eqvrelcl φAdomR
4 1 3 eqvrelth φARBAR=BR
5 2 4 mpbid φAR=BR