Metamath Proof Explorer


Theorem erALTVeq1

Description: Equality theorem for equivalence relation on domain quotient. (Contributed by Peter Mazsa, 25-Sep-2021)

Ref Expression
Assertion erALTVeq1 R=SRErALTVASErALTVA

Proof

Step Hyp Ref Expression
1 eqvreleq R=SEqvRelREqvRelS
2 dmqseqeq1 R=SdomR/R=AdomS/S=A
3 1 2 anbi12d R=SEqvRelRdomR/R=AEqvRelSdomS/S=A
4 dferALTV2 RErALTVAEqvRelRdomR/R=A
5 dferALTV2 SErALTVAEqvRelSdomS/S=A
6 3 4 5 3bitr4g R=SRErALTVASErALTVA