Metamath Proof Explorer


Theorem estrreslem2

Description: Lemma 2 for estrres . (Contributed by AV, 14-Mar-2020)

Ref Expression
Hypotheses estrres.c φC=BasendxBHomndxHcompndx·˙
estrres.b φBV
estrres.h φHX
estrres.x φ·˙Y
Assertion estrreslem2 φBasendxdomC

Proof

Step Hyp Ref Expression
1 estrres.c φC=BasendxBHomndxHcompndx·˙
2 estrres.b φBV
3 estrres.h φHX
4 estrres.x φ·˙Y
5 eqidd φBasendx=Basendx
6 5 3mix1d φBasendx=BasendxBasendx=HomndxBasendx=compndx
7 fvex BasendxV
8 eltpg BasendxVBasendxBasendxHomndxcompndxBasendx=BasendxBasendx=HomndxBasendx=compndx
9 7 8 mp1i φBasendxBasendxHomndxcompndxBasendx=BasendxBasendx=HomndxBasendx=compndx
10 6 9 mpbird φBasendxBasendxHomndxcompndx
11 df-tp BasendxBHomndxHcompndx·˙=BasendxBHomndxHcompndx·˙
12 11 a1i φBasendxBHomndxHcompndx·˙=BasendxBHomndxHcompndx·˙
13 12 dmeqd φdomBasendxBHomndxHcompndx·˙=domBasendxBHomndxHcompndx·˙
14 dmun domBasendxBHomndxHcompndx·˙=domBasendxBHomndxHdomcompndx·˙
15 14 a1i φdomBasendxBHomndxHcompndx·˙=domBasendxBHomndxHdomcompndx·˙
16 dmpropg BVHXdomBasendxBHomndxH=BasendxHomndx
17 2 3 16 syl2anc φdomBasendxBHomndxH=BasendxHomndx
18 dmsnopg ·˙Ydomcompndx·˙=compndx
19 4 18 syl φdomcompndx·˙=compndx
20 17 19 uneq12d φdomBasendxBHomndxHdomcompndx·˙=BasendxHomndxcompndx
21 13 15 20 3eqtrd φdomBasendxBHomndxHcompndx·˙=BasendxHomndxcompndx
22 1 dmeqd φdomC=domBasendxBHomndxHcompndx·˙
23 df-tp BasendxHomndxcompndx=BasendxHomndxcompndx
24 23 a1i φBasendxHomndxcompndx=BasendxHomndxcompndx
25 21 22 24 3eqtr4d φdomC=BasendxHomndxcompndx
26 10 25 eleqtrrd φBasendxdomC