Metamath Proof Explorer


Theorem eu2

Description: An alternate way of defining existential uniqueness. Definition 6.10 of TakeutiZaring p. 26. (Contributed by NM, 8-Jul-1994) (Proof shortened by Wolf Lammen, 2-Dec-2018)

Ref Expression
Hypothesis eu2.nf yφ
Assertion eu2 ∃!xφxφxyφyxφx=y

Proof

Step Hyp Ref Expression
1 eu2.nf yφ
2 df-eu ∃!xφxφ*xφ
3 1 mo3 *xφxyφyxφx=y
4 3 anbi2i xφ*xφxφxyφyxφx=y
5 2 4 bitri ∃!xφxφxyφyxφx=y