Metamath Proof Explorer


Theorem euabsn2w

Description: Replace ax-10 , ax-11 , ax-12 in euabsn2 with substitution hypotheses. (Contributed by SN, 27-May-2025)

Ref Expression
Hypotheses absnw.y x = y φ ψ
euabsn2w.z x = z φ θ
Assertion euabsn2w ∃! x φ y x | φ = y

Proof

Step Hyp Ref Expression
1 absnw.y x = y φ ψ
2 euabsn2w.z x = z φ θ
3 2 1 eu6w ∃! x φ y x φ x = y
4 2 absnw x | φ = y x φ x = y
5 4 exbii y x | φ = y y x φ x = y
6 3 5 bitr4i ∃! x φ y x | φ = y