Metamath Proof Explorer


Theorem euclemma

Description: Euclid's lemma. A prime number divides the product of two integers iff it divides at least one of them. Theorem 1.9 in ApostolNT p. 17. (Contributed by Paul Chapman, 17-Nov-2012)

Ref Expression
Assertion euclemma PMNP M NPMPN

Proof

Step Hyp Ref Expression
1 coprm PM¬PMPgcdM=1
2 1 3adant3 PMN¬PMPgcdM=1
3 2 anbi2d PMNP M N¬PMP M NPgcdM=1
4 prmz PP
5 coprmdvds PMNP M NPgcdM=1PN
6 4 5 syl3an1 PMNP M NPgcdM=1PN
7 3 6 sylbid PMNP M N¬PMPN
8 7 expd PMNP M N¬PMPN
9 df-or PMPN¬PMPN
10 8 9 imbitrrdi PMNP M NPMPN
11 ordvdsmul PMNPMPNP M N
12 4 11 syl3an1 PMNPMPNP M N
13 10 12 impbid PMNP M NPMPN