Description: Euclid's lemma. A prime number divides the product of two integers iff it divides at least one of them. Theorem 1.9 in ApostolNT p. 17. (Contributed by Paul Chapman, 17-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | euclemma | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coprm | |
|
2 | 1 | 3adant3 | |
3 | 2 | anbi2d | |
4 | prmz | |
|
5 | coprmdvds | |
|
6 | 4 5 | syl3an1 | |
7 | 3 6 | sylbid | |
8 | 7 | expd | |
9 | df-or | |
|
10 | 8 9 | imbitrrdi | |
11 | ordvdsmul | |
|
12 | 4 11 | syl3an1 | |
13 | 10 12 | impbid | |