Metamath Proof Explorer


Theorem eucrct2eupth1

Description: Removing one edge ( I( FN ) ) from a nonempty graph G with an Eulerian circuit <. F , P >. results in a graph S with an Eulerian path <. H , Q >. . This is the special case of eucrct2eupth (with J = ( N - 1 ) ) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)

Ref Expression
Hypotheses eucrct2eupth1.v V = Vtx G
eucrct2eupth1.i I = iEdg G
eucrct2eupth1.d φ F EulerPaths G P
eucrct2eupth1.c φ F Circuits G P
eucrct2eupth1.s Vtx S = V
eucrct2eupth1.g φ 0 < F
eucrct2eupth1.n φ N = F 1
eucrct2eupth1.e φ iEdg S = I F 0 ..^ N
eucrct2eupth1.h H = F prefix N
eucrct2eupth1.q Q = P 0 N
Assertion eucrct2eupth1 φ H EulerPaths S Q

Proof

Step Hyp Ref Expression
1 eucrct2eupth1.v V = Vtx G
2 eucrct2eupth1.i I = iEdg G
3 eucrct2eupth1.d φ F EulerPaths G P
4 eucrct2eupth1.c φ F Circuits G P
5 eucrct2eupth1.s Vtx S = V
6 eucrct2eupth1.g φ 0 < F
7 eucrct2eupth1.n φ N = F 1
8 eucrct2eupth1.e φ iEdg S = I F 0 ..^ N
9 eucrct2eupth1.h H = F prefix N
10 eucrct2eupth1.q Q = P 0 N
11 eupthiswlk F EulerPaths G P F Walks G P
12 wlkcl F Walks G P F 0
13 nn0z F 0 F
14 13 anim1i F 0 0 < F F 0 < F
15 elnnz F F 0 < F
16 14 15 sylibr F 0 0 < F F
17 16 ex F 0 0 < F F
18 12 17 syl F Walks G P 0 < F F
19 3 11 18 3syl φ 0 < F F
20 6 19 mpd φ F
21 fzo0end F F 1 0 ..^ F
22 20 21 syl φ F 1 0 ..^ F
23 7 22 eqeltrd φ N 0 ..^ F
24 1 2 3 23 8 9 10 5 eupthres φ H EulerPaths S Q