| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eucrct2eupth1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | eucrct2eupth1.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | eucrct2eupth1.d |  |-  ( ph -> F ( EulerPaths ` G ) P ) | 
						
							| 4 |  | eucrct2eupth1.c |  |-  ( ph -> F ( Circuits ` G ) P ) | 
						
							| 5 |  | eucrct2eupth1.s |  |-  ( Vtx ` S ) = V | 
						
							| 6 |  | eucrct2eupth1.g |  |-  ( ph -> 0 < ( # ` F ) ) | 
						
							| 7 |  | eucrct2eupth1.n |  |-  ( ph -> N = ( ( # ` F ) - 1 ) ) | 
						
							| 8 |  | eucrct2eupth1.e |  |-  ( ph -> ( iEdg ` S ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) | 
						
							| 9 |  | eucrct2eupth1.h |  |-  H = ( F prefix N ) | 
						
							| 10 |  | eucrct2eupth1.q |  |-  Q = ( P |` ( 0 ... N ) ) | 
						
							| 11 |  | eupthiswlk |  |-  ( F ( EulerPaths ` G ) P -> F ( Walks ` G ) P ) | 
						
							| 12 |  | wlkcl |  |-  ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) | 
						
							| 13 |  | nn0z |  |-  ( ( # ` F ) e. NN0 -> ( # ` F ) e. ZZ ) | 
						
							| 14 | 13 | anim1i |  |-  ( ( ( # ` F ) e. NN0 /\ 0 < ( # ` F ) ) -> ( ( # ` F ) e. ZZ /\ 0 < ( # ` F ) ) ) | 
						
							| 15 |  | elnnz |  |-  ( ( # ` F ) e. NN <-> ( ( # ` F ) e. ZZ /\ 0 < ( # ` F ) ) ) | 
						
							| 16 | 14 15 | sylibr |  |-  ( ( ( # ` F ) e. NN0 /\ 0 < ( # ` F ) ) -> ( # ` F ) e. NN ) | 
						
							| 17 | 16 | ex |  |-  ( ( # ` F ) e. NN0 -> ( 0 < ( # ` F ) -> ( # ` F ) e. NN ) ) | 
						
							| 18 | 3 11 12 17 | 4syl |  |-  ( ph -> ( 0 < ( # ` F ) -> ( # ` F ) e. NN ) ) | 
						
							| 19 | 6 18 | mpd |  |-  ( ph -> ( # ` F ) e. NN ) | 
						
							| 20 |  | fzo0end |  |-  ( ( # ` F ) e. NN -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ph -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 22 | 7 21 | eqeltrd |  |-  ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 23 | 1 2 3 22 8 9 10 5 | eupthres |  |-  ( ph -> H ( EulerPaths ` S ) Q ) |