| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eucrct2eupth1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | eucrct2eupth1.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | eucrct2eupth1.d |  |-  ( ph -> F ( EulerPaths ` G ) P ) | 
						
							| 4 |  | eucrct2eupth1.c |  |-  ( ph -> F ( Circuits ` G ) P ) | 
						
							| 5 |  | eucrct2eupth1.s |  |-  ( Vtx ` S ) = V | 
						
							| 6 |  | eucrct2eupth.n |  |-  ( ph -> N = ( # ` F ) ) | 
						
							| 7 |  | eucrct2eupth.j |  |-  ( ph -> J e. ( 0 ..^ N ) ) | 
						
							| 8 |  | eucrct2eupth.e |  |-  ( ph -> ( iEdg ` S ) = ( I |` ( F " ( ( 0 ..^ N ) \ { J } ) ) ) ) | 
						
							| 9 |  | eucrct2eupth.k |  |-  K = ( J + 1 ) | 
						
							| 10 |  | eucrct2eupth.h |  |-  H = ( ( F cyclShift K ) prefix ( N - 1 ) ) | 
						
							| 11 |  | eucrct2eupth.q |  |-  Q = ( x e. ( 0 ..^ N ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) | 
						
							| 12 | 3 | adantl |  |-  ( ( J = ( N - 1 ) /\ ph ) -> F ( EulerPaths ` G ) P ) | 
						
							| 13 | 9 | eqcomi |  |-  ( J + 1 ) = K | 
						
							| 14 | 13 | oveq2i |  |-  ( F cyclShift ( J + 1 ) ) = ( F cyclShift K ) | 
						
							| 15 |  | oveq1 |  |-  ( J = ( N - 1 ) -> ( J + 1 ) = ( ( N - 1 ) + 1 ) ) | 
						
							| 16 |  | elfzo0 |  |-  ( J e. ( 0 ..^ N ) <-> ( J e. NN0 /\ N e. NN /\ J < N ) ) | 
						
							| 17 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 18 | 17 | 3ad2ant2 |  |-  ( ( J e. NN0 /\ N e. NN /\ J < N ) -> N e. CC ) | 
						
							| 19 | 16 18 | sylbi |  |-  ( J e. ( 0 ..^ N ) -> N e. CC ) | 
						
							| 20 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 21 | 7 19 20 | 3syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 22 | 15 21 | sylan9eq |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( J + 1 ) = N ) | 
						
							| 23 | 22 | oveq2d |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( F cyclShift ( J + 1 ) ) = ( F cyclShift N ) ) | 
						
							| 24 | 6 | oveq2d |  |-  ( ph -> ( F cyclShift N ) = ( F cyclShift ( # ` F ) ) ) | 
						
							| 25 |  | crctiswlk |  |-  ( F ( Circuits ` G ) P -> F ( Walks ` G ) P ) | 
						
							| 26 | 2 | wlkf |  |-  ( F ( Walks ` G ) P -> F e. Word dom I ) | 
						
							| 27 | 25 26 | syl |  |-  ( F ( Circuits ` G ) P -> F e. Word dom I ) | 
						
							| 28 | 4 27 | syl |  |-  ( ph -> F e. Word dom I ) | 
						
							| 29 |  | cshwn |  |-  ( F e. Word dom I -> ( F cyclShift ( # ` F ) ) = F ) | 
						
							| 30 | 28 29 | syl |  |-  ( ph -> ( F cyclShift ( # ` F ) ) = F ) | 
						
							| 31 | 24 30 | eqtrd |  |-  ( ph -> ( F cyclShift N ) = F ) | 
						
							| 32 | 31 | adantl |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( F cyclShift N ) = F ) | 
						
							| 33 | 23 32 | eqtrd |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( F cyclShift ( J + 1 ) ) = F ) | 
						
							| 34 | 14 33 | eqtr3id |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( F cyclShift K ) = F ) | 
						
							| 35 |  | eqid |  |-  ( # ` F ) = ( # ` F ) | 
						
							| 36 | 1 2 4 35 | crctcshlem1 |  |-  ( ph -> ( # ` F ) e. NN0 ) | 
						
							| 37 |  | fz0sn0fz1 |  |-  ( ( # ` F ) e. NN0 -> ( 0 ... ( # ` F ) ) = ( { 0 } u. ( 1 ... ( # ` F ) ) ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( ph -> ( 0 ... ( # ` F ) ) = ( { 0 } u. ( 1 ... ( # ` F ) ) ) ) | 
						
							| 39 | 38 | eleq2d |  |-  ( ph -> ( x e. ( 0 ... ( # ` F ) ) <-> x e. ( { 0 } u. ( 1 ... ( # ` F ) ) ) ) ) | 
						
							| 40 |  | elun |  |-  ( x e. ( { 0 } u. ( 1 ... ( # ` F ) ) ) <-> ( x e. { 0 } \/ x e. ( 1 ... ( # ` F ) ) ) ) | 
						
							| 41 | 39 40 | bitrdi |  |-  ( ph -> ( x e. ( 0 ... ( # ` F ) ) <-> ( x e. { 0 } \/ x e. ( 1 ... ( # ` F ) ) ) ) ) | 
						
							| 42 |  | elsni |  |-  ( x e. { 0 } -> x = 0 ) | 
						
							| 43 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 44 | 42 43 | eqbrtrdi |  |-  ( x e. { 0 } -> x <_ 0 ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ph /\ x e. { 0 } ) -> x <_ 0 ) | 
						
							| 46 | 45 | iftrued |  |-  ( ( ph /\ x e. { 0 } ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` ( x + N ) ) ) | 
						
							| 47 | 6 | fveq2d |  |-  ( ph -> ( P ` N ) = ( P ` ( # ` F ) ) ) | 
						
							| 48 |  | crctprop |  |-  ( F ( Circuits ` G ) P -> ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) | 
						
							| 49 |  | simpr |  |-  ( ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) | 
						
							| 50 | 49 | eqcomd |  |-  ( ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P ` ( # ` F ) ) = ( P ` 0 ) ) | 
						
							| 51 | 4 48 50 | 3syl |  |-  ( ph -> ( P ` ( # ` F ) ) = ( P ` 0 ) ) | 
						
							| 52 | 47 51 | eqtrd |  |-  ( ph -> ( P ` N ) = ( P ` 0 ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ph /\ x = 0 ) -> ( P ` N ) = ( P ` 0 ) ) | 
						
							| 54 |  | oveq1 |  |-  ( x = 0 -> ( x + N ) = ( 0 + N ) ) | 
						
							| 55 | 7 19 | syl |  |-  ( ph -> N e. CC ) | 
						
							| 56 | 55 | addlidd |  |-  ( ph -> ( 0 + N ) = N ) | 
						
							| 57 | 54 56 | sylan9eqr |  |-  ( ( ph /\ x = 0 ) -> ( x + N ) = N ) | 
						
							| 58 | 57 | fveq2d |  |-  ( ( ph /\ x = 0 ) -> ( P ` ( x + N ) ) = ( P ` N ) ) | 
						
							| 59 |  | fveq2 |  |-  ( x = 0 -> ( P ` x ) = ( P ` 0 ) ) | 
						
							| 60 | 59 | adantl |  |-  ( ( ph /\ x = 0 ) -> ( P ` x ) = ( P ` 0 ) ) | 
						
							| 61 | 53 58 60 | 3eqtr4d |  |-  ( ( ph /\ x = 0 ) -> ( P ` ( x + N ) ) = ( P ` x ) ) | 
						
							| 62 | 42 61 | sylan2 |  |-  ( ( ph /\ x e. { 0 } ) -> ( P ` ( x + N ) ) = ( P ` x ) ) | 
						
							| 63 | 46 62 | eqtrd |  |-  ( ( ph /\ x e. { 0 } ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` x ) ) | 
						
							| 64 | 63 | ex |  |-  ( ph -> ( x e. { 0 } -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` x ) ) ) | 
						
							| 65 |  | elfznn |  |-  ( x e. ( 1 ... ( # ` F ) ) -> x e. NN ) | 
						
							| 66 |  | nnnle0 |  |-  ( x e. NN -> -. x <_ 0 ) | 
						
							| 67 | 65 66 | syl |  |-  ( x e. ( 1 ... ( # ` F ) ) -> -. x <_ 0 ) | 
						
							| 68 | 67 | adantl |  |-  ( ( ph /\ x e. ( 1 ... ( # ` F ) ) ) -> -. x <_ 0 ) | 
						
							| 69 | 68 | iffalsed |  |-  ( ( ph /\ x e. ( 1 ... ( # ` F ) ) ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` ( ( x + N ) - N ) ) ) | 
						
							| 70 | 65 | nncnd |  |-  ( x e. ( 1 ... ( # ` F ) ) -> x e. CC ) | 
						
							| 71 | 70 | adantl |  |-  ( ( ph /\ x e. ( 1 ... ( # ` F ) ) ) -> x e. CC ) | 
						
							| 72 | 55 | adantr |  |-  ( ( ph /\ x e. ( 1 ... ( # ` F ) ) ) -> N e. CC ) | 
						
							| 73 | 71 72 | pncand |  |-  ( ( ph /\ x e. ( 1 ... ( # ` F ) ) ) -> ( ( x + N ) - N ) = x ) | 
						
							| 74 | 73 | fveq2d |  |-  ( ( ph /\ x e. ( 1 ... ( # ` F ) ) ) -> ( P ` ( ( x + N ) - N ) ) = ( P ` x ) ) | 
						
							| 75 | 69 74 | eqtrd |  |-  ( ( ph /\ x e. ( 1 ... ( # ` F ) ) ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` x ) ) | 
						
							| 76 | 75 | ex |  |-  ( ph -> ( x e. ( 1 ... ( # ` F ) ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` x ) ) ) | 
						
							| 77 | 64 76 | jaod |  |-  ( ph -> ( ( x e. { 0 } \/ x e. ( 1 ... ( # ` F ) ) ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` x ) ) ) | 
						
							| 78 | 41 77 | sylbid |  |-  ( ph -> ( x e. ( 0 ... ( # ` F ) ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` x ) ) ) | 
						
							| 79 | 78 | imp |  |-  ( ( ph /\ x e. ( 0 ... ( # ` F ) ) ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` x ) ) | 
						
							| 80 | 79 | mpteq2dva |  |-  ( ph -> ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) ) = ( x e. ( 0 ... ( # ` F ) ) |-> ( P ` x ) ) ) | 
						
							| 81 | 80 | adantl |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) ) = ( x e. ( 0 ... ( # ` F ) ) |-> ( P ` x ) ) ) | 
						
							| 82 | 9 | oveq2i |  |-  ( N - K ) = ( N - ( J + 1 ) ) | 
						
							| 83 | 15 | oveq2d |  |-  ( J = ( N - 1 ) -> ( N - ( J + 1 ) ) = ( N - ( ( N - 1 ) + 1 ) ) ) | 
						
							| 84 | 21 | oveq2d |  |-  ( ph -> ( N - ( ( N - 1 ) + 1 ) ) = ( N - N ) ) | 
						
							| 85 | 55 | subidd |  |-  ( ph -> ( N - N ) = 0 ) | 
						
							| 86 | 84 85 | eqtrd |  |-  ( ph -> ( N - ( ( N - 1 ) + 1 ) ) = 0 ) | 
						
							| 87 | 83 86 | sylan9eq |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( N - ( J + 1 ) ) = 0 ) | 
						
							| 88 | 82 87 | eqtrid |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( N - K ) = 0 ) | 
						
							| 89 | 88 | breq2d |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( x <_ ( N - K ) <-> x <_ 0 ) ) | 
						
							| 90 | 9 | oveq2i |  |-  ( x + K ) = ( x + ( J + 1 ) ) | 
						
							| 91 | 90 | fveq2i |  |-  ( P ` ( x + K ) ) = ( P ` ( x + ( J + 1 ) ) ) | 
						
							| 92 | 15 | oveq2d |  |-  ( J = ( N - 1 ) -> ( x + ( J + 1 ) ) = ( x + ( ( N - 1 ) + 1 ) ) ) | 
						
							| 93 | 21 | oveq2d |  |-  ( ph -> ( x + ( ( N - 1 ) + 1 ) ) = ( x + N ) ) | 
						
							| 94 | 92 93 | sylan9eq |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( x + ( J + 1 ) ) = ( x + N ) ) | 
						
							| 95 | 94 | fveq2d |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( P ` ( x + ( J + 1 ) ) ) = ( P ` ( x + N ) ) ) | 
						
							| 96 | 91 95 | eqtrid |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( P ` ( x + K ) ) = ( P ` ( x + N ) ) ) | 
						
							| 97 | 90 | oveq1i |  |-  ( ( x + K ) - N ) = ( ( x + ( J + 1 ) ) - N ) | 
						
							| 98 | 97 | fveq2i |  |-  ( P ` ( ( x + K ) - N ) ) = ( P ` ( ( x + ( J + 1 ) ) - N ) ) | 
						
							| 99 | 92 | oveq1d |  |-  ( J = ( N - 1 ) -> ( ( x + ( J + 1 ) ) - N ) = ( ( x + ( ( N - 1 ) + 1 ) ) - N ) ) | 
						
							| 100 | 93 | oveq1d |  |-  ( ph -> ( ( x + ( ( N - 1 ) + 1 ) ) - N ) = ( ( x + N ) - N ) ) | 
						
							| 101 | 99 100 | sylan9eq |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( ( x + ( J + 1 ) ) - N ) = ( ( x + N ) - N ) ) | 
						
							| 102 | 101 | fveq2d |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( P ` ( ( x + ( J + 1 ) ) - N ) ) = ( P ` ( ( x + N ) - N ) ) ) | 
						
							| 103 | 98 102 | eqtrid |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( P ` ( ( x + K ) - N ) ) = ( P ` ( ( x + N ) - N ) ) ) | 
						
							| 104 | 89 96 103 | ifbieq12d |  |-  ( ( J = ( N - 1 ) /\ ph ) -> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) = if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) ) | 
						
							| 105 | 104 | mpteq2dv |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) = ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) ) ) | 
						
							| 106 | 4 25 | syl |  |-  ( ph -> F ( Walks ` G ) P ) | 
						
							| 107 | 1 | wlkp |  |-  ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V ) | 
						
							| 108 |  | ffn |  |-  ( P : ( 0 ... ( # ` F ) ) --> V -> P Fn ( 0 ... ( # ` F ) ) ) | 
						
							| 109 | 106 107 108 | 3syl |  |-  ( ph -> P Fn ( 0 ... ( # ` F ) ) ) | 
						
							| 110 | 109 | adantl |  |-  ( ( J = ( N - 1 ) /\ ph ) -> P Fn ( 0 ... ( # ` F ) ) ) | 
						
							| 111 |  | dffn5 |  |-  ( P Fn ( 0 ... ( # ` F ) ) <-> P = ( x e. ( 0 ... ( # ` F ) ) |-> ( P ` x ) ) ) | 
						
							| 112 | 110 111 | sylib |  |-  ( ( J = ( N - 1 ) /\ ph ) -> P = ( x e. ( 0 ... ( # ` F ) ) |-> ( P ` x ) ) ) | 
						
							| 113 | 81 105 112 | 3eqtr4d |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) = P ) | 
						
							| 114 | 12 34 113 | 3brtr4d |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) ) | 
						
							| 115 | 4 | adantl |  |-  ( ( J = ( N - 1 ) /\ ph ) -> F ( Circuits ` G ) P ) | 
						
							| 116 | 115 34 113 | 3brtr4d |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) ) | 
						
							| 117 |  | elfzolt3 |  |-  ( J e. ( 0 ..^ N ) -> 0 < N ) | 
						
							| 118 | 7 117 | syl |  |-  ( ph -> 0 < N ) | 
						
							| 119 |  | elfzoelz |  |-  ( J e. ( 0 ..^ N ) -> J e. ZZ ) | 
						
							| 120 | 7 119 | syl |  |-  ( ph -> J e. ZZ ) | 
						
							| 121 | 120 | peano2zd |  |-  ( ph -> ( J + 1 ) e. ZZ ) | 
						
							| 122 | 9 121 | eqeltrid |  |-  ( ph -> K e. ZZ ) | 
						
							| 123 |  | cshwlen |  |-  ( ( F e. Word dom I /\ K e. ZZ ) -> ( # ` ( F cyclShift K ) ) = ( # ` F ) ) | 
						
							| 124 | 123 | eqcomd |  |-  ( ( F e. Word dom I /\ K e. ZZ ) -> ( # ` F ) = ( # ` ( F cyclShift K ) ) ) | 
						
							| 125 | 28 122 124 | syl2anc |  |-  ( ph -> ( # ` F ) = ( # ` ( F cyclShift K ) ) ) | 
						
							| 126 | 6 125 | eqtrd |  |-  ( ph -> N = ( # ` ( F cyclShift K ) ) ) | 
						
							| 127 | 118 126 | breqtrd |  |-  ( ph -> 0 < ( # ` ( F cyclShift K ) ) ) | 
						
							| 128 | 127 | adantl |  |-  ( ( J = ( N - 1 ) /\ ph ) -> 0 < ( # ` ( F cyclShift K ) ) ) | 
						
							| 129 | 126 | adantl |  |-  ( ( J = ( N - 1 ) /\ ph ) -> N = ( # ` ( F cyclShift K ) ) ) | 
						
							| 130 | 129 | oveq1d |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( N - 1 ) = ( ( # ` ( F cyclShift K ) ) - 1 ) ) | 
						
							| 131 | 8 | adantl |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( iEdg ` S ) = ( I |` ( F " ( ( 0 ..^ N ) \ { J } ) ) ) ) | 
						
							| 132 | 28 6 7 | 3jca |  |-  ( ph -> ( F e. Word dom I /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) ) | 
						
							| 133 | 132 | adantl |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( F e. Word dom I /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) ) | 
						
							| 134 |  | cshimadifsn0 |  |-  ( ( F e. Word dom I /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) ) | 
						
							| 135 | 133 134 | syl |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) ) | 
						
							| 136 | 14 | imaeq1i |  |-  ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) = ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) | 
						
							| 137 | 135 136 | eqtrdi |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) ) | 
						
							| 138 | 137 | reseq2d |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( I |` ( F " ( ( 0 ..^ N ) \ { J } ) ) ) = ( I |` ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) ) ) | 
						
							| 139 | 131 138 | eqtrd |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( iEdg ` S ) = ( I |` ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) ) ) | 
						
							| 140 |  | eqid |  |-  ( ( F cyclShift K ) prefix ( N - 1 ) ) = ( ( F cyclShift K ) prefix ( N - 1 ) ) | 
						
							| 141 |  | eqid |  |-  ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) | 
						
							| 142 | 1 2 114 116 5 128 130 139 140 141 | eucrct2eupth1 |  |-  ( ( J = ( N - 1 ) /\ ph ) -> ( ( F cyclShift K ) prefix ( N - 1 ) ) ( EulerPaths ` S ) ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 143 | 10 | a1i |  |-  ( ( J = ( N - 1 ) /\ ph ) -> H = ( ( F cyclShift K ) prefix ( N - 1 ) ) ) | 
						
							| 144 |  | fzossfz |  |-  ( 0 ..^ N ) C_ ( 0 ... N ) | 
						
							| 145 | 6 | oveq2d |  |-  ( ph -> ( 0 ... N ) = ( 0 ... ( # ` F ) ) ) | 
						
							| 146 | 144 145 | sseqtrid |  |-  ( ph -> ( 0 ..^ N ) C_ ( 0 ... ( # ` F ) ) ) | 
						
							| 147 | 146 | resmptd |  |-  ( ph -> ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ..^ N ) ) = ( x e. ( 0 ..^ N ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) ) | 
						
							| 148 |  | elfzoel2 |  |-  ( J e. ( 0 ..^ N ) -> N e. ZZ ) | 
						
							| 149 |  | fzoval |  |-  ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) | 
						
							| 150 | 7 148 149 | 3syl |  |-  ( ph -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) | 
						
							| 151 | 150 | reseq2d |  |-  ( ph -> ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ..^ N ) ) = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 152 | 147 151 | eqtr3d |  |-  ( ph -> ( x e. ( 0 ..^ N ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 153 | 11 152 | eqtrid |  |-  ( ph -> Q = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 154 | 153 | adantl |  |-  ( ( J = ( N - 1 ) /\ ph ) -> Q = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 155 | 142 143 154 | 3brtr4d |  |-  ( ( J = ( N - 1 ) /\ ph ) -> H ( EulerPaths ` S ) Q ) | 
						
							| 156 | 4 | adantl |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> F ( Circuits ` G ) P ) | 
						
							| 157 |  | peano2nn0 |  |-  ( J e. NN0 -> ( J + 1 ) e. NN0 ) | 
						
							| 158 | 157 | 3ad2ant1 |  |-  ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J + 1 ) e. NN0 ) | 
						
							| 159 | 158 | adantr |  |-  ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ -. J = ( N - 1 ) ) -> ( J + 1 ) e. NN0 ) | 
						
							| 160 |  | simpl2 |  |-  ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ -. J = ( N - 1 ) ) -> N e. NN ) | 
						
							| 161 |  | 1cnd |  |-  ( ( J e. NN0 /\ N e. NN /\ J < N ) -> 1 e. CC ) | 
						
							| 162 |  | nn0cn |  |-  ( J e. NN0 -> J e. CC ) | 
						
							| 163 | 162 | 3ad2ant1 |  |-  ( ( J e. NN0 /\ N e. NN /\ J < N ) -> J e. CC ) | 
						
							| 164 | 18 161 163 | subadd2d |  |-  ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( ( N - 1 ) = J <-> ( J + 1 ) = N ) ) | 
						
							| 165 |  | eqcom |  |-  ( J = ( N - 1 ) <-> ( N - 1 ) = J ) | 
						
							| 166 |  | eqcom |  |-  ( N = ( J + 1 ) <-> ( J + 1 ) = N ) | 
						
							| 167 | 164 165 166 | 3bitr4g |  |-  ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J = ( N - 1 ) <-> N = ( J + 1 ) ) ) | 
						
							| 168 | 167 | necon3bbid |  |-  ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( -. J = ( N - 1 ) <-> N =/= ( J + 1 ) ) ) | 
						
							| 169 | 157 | nn0red |  |-  ( J e. NN0 -> ( J + 1 ) e. RR ) | 
						
							| 170 | 169 | 3ad2ant1 |  |-  ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J + 1 ) e. RR ) | 
						
							| 171 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 172 | 171 | 3ad2ant2 |  |-  ( ( J e. NN0 /\ N e. NN /\ J < N ) -> N e. RR ) | 
						
							| 173 |  | nn0z |  |-  ( J e. NN0 -> J e. ZZ ) | 
						
							| 174 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 175 |  | zltp1le |  |-  ( ( J e. ZZ /\ N e. ZZ ) -> ( J < N <-> ( J + 1 ) <_ N ) ) | 
						
							| 176 | 173 174 175 | syl2an |  |-  ( ( J e. NN0 /\ N e. NN ) -> ( J < N <-> ( J + 1 ) <_ N ) ) | 
						
							| 177 | 176 | biimp3a |  |-  ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J + 1 ) <_ N ) | 
						
							| 178 | 170 172 177 | leltned |  |-  ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( ( J + 1 ) < N <-> N =/= ( J + 1 ) ) ) | 
						
							| 179 | 178 | biimprd |  |-  ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( N =/= ( J + 1 ) -> ( J + 1 ) < N ) ) | 
						
							| 180 | 168 179 | sylbid |  |-  ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( -. J = ( N - 1 ) -> ( J + 1 ) < N ) ) | 
						
							| 181 | 180 | imp |  |-  ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ -. J = ( N - 1 ) ) -> ( J + 1 ) < N ) | 
						
							| 182 | 159 160 181 | 3jca |  |-  ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ -. J = ( N - 1 ) ) -> ( ( J + 1 ) e. NN0 /\ N e. NN /\ ( J + 1 ) < N ) ) | 
						
							| 183 | 182 | ex |  |-  ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( -. J = ( N - 1 ) -> ( ( J + 1 ) e. NN0 /\ N e. NN /\ ( J + 1 ) < N ) ) ) | 
						
							| 184 | 16 183 | sylbi |  |-  ( J e. ( 0 ..^ N ) -> ( -. J = ( N - 1 ) -> ( ( J + 1 ) e. NN0 /\ N e. NN /\ ( J + 1 ) < N ) ) ) | 
						
							| 185 |  | elfzo0 |  |-  ( ( J + 1 ) e. ( 0 ..^ N ) <-> ( ( J + 1 ) e. NN0 /\ N e. NN /\ ( J + 1 ) < N ) ) | 
						
							| 186 | 184 185 | imbitrrdi |  |-  ( J e. ( 0 ..^ N ) -> ( -. J = ( N - 1 ) -> ( J + 1 ) e. ( 0 ..^ N ) ) ) | 
						
							| 187 | 7 186 | syl |  |-  ( ph -> ( -. J = ( N - 1 ) -> ( J + 1 ) e. ( 0 ..^ N ) ) ) | 
						
							| 188 | 187 | impcom |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( J + 1 ) e. ( 0 ..^ N ) ) | 
						
							| 189 | 9 | a1i |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> K = ( J + 1 ) ) | 
						
							| 190 | 6 | eqcomd |  |-  ( ph -> ( # ` F ) = N ) | 
						
							| 191 | 190 | oveq2d |  |-  ( ph -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) ) | 
						
							| 192 | 191 | adantl |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) ) | 
						
							| 193 | 188 189 192 | 3eltr4d |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> K e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 194 |  | eqid |  |-  ( F cyclShift K ) = ( F cyclShift K ) | 
						
							| 195 |  | eqid |  |-  ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) = ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) | 
						
							| 196 | 3 | adantl |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> F ( EulerPaths ` G ) P ) | 
						
							| 197 | 1 2 156 35 193 194 195 196 | eucrctshift |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) | 
						
							| 198 |  | simprl |  |-  ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) | 
						
							| 199 |  | simprr |  |-  ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) | 
						
							| 200 | 127 | ad2antlr |  |-  ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> 0 < ( # ` ( F cyclShift K ) ) ) | 
						
							| 201 | 126 | oveq1d |  |-  ( ph -> ( N - 1 ) = ( ( # ` ( F cyclShift K ) ) - 1 ) ) | 
						
							| 202 | 201 | ad2antlr |  |-  ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> ( N - 1 ) = ( ( # ` ( F cyclShift K ) ) - 1 ) ) | 
						
							| 203 | 8 | adantl |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( iEdg ` S ) = ( I |` ( F " ( ( 0 ..^ N ) \ { J } ) ) ) ) | 
						
							| 204 | 132 | adantl |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( F e. Word dom I /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) ) | 
						
							| 205 | 204 134 | syl |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) ) | 
						
							| 206 | 205 136 | eqtrdi |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) ) | 
						
							| 207 | 206 | reseq2d |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( I |` ( F " ( ( 0 ..^ N ) \ { J } ) ) ) = ( I |` ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) ) ) | 
						
							| 208 | 203 207 | eqtrd |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( iEdg ` S ) = ( I |` ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) ) ) | 
						
							| 209 | 208 | adantr |  |-  ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> ( iEdg ` S ) = ( I |` ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) ) ) | 
						
							| 210 |  | eqid |  |-  ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) | 
						
							| 211 | 1 2 198 199 5 200 202 209 140 210 | eucrct2eupth1 |  |-  ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> ( ( F cyclShift K ) prefix ( N - 1 ) ) ( EulerPaths ` S ) ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 212 | 10 | a1i |  |-  ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> H = ( ( F cyclShift K ) prefix ( N - 1 ) ) ) | 
						
							| 213 | 190 | oveq1d |  |-  ( ph -> ( ( # ` F ) - K ) = ( N - K ) ) | 
						
							| 214 | 213 | breq2d |  |-  ( ph -> ( x <_ ( ( # ` F ) - K ) <-> x <_ ( N - K ) ) ) | 
						
							| 215 | 214 | adantl |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( x <_ ( ( # ` F ) - K ) <-> x <_ ( N - K ) ) ) | 
						
							| 216 | 190 | oveq2d |  |-  ( ph -> ( ( x + K ) - ( # ` F ) ) = ( ( x + K ) - N ) ) | 
						
							| 217 | 216 | fveq2d |  |-  ( ph -> ( P ` ( ( x + K ) - ( # ` F ) ) ) = ( P ` ( ( x + K ) - N ) ) ) | 
						
							| 218 | 217 | adantl |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( P ` ( ( x + K ) - ( # ` F ) ) ) = ( P ` ( ( x + K ) - N ) ) ) | 
						
							| 219 | 215 218 | ifbieq2d |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) = if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) | 
						
							| 220 | 219 | mpteq2dv |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) = ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) ) | 
						
							| 221 | 150 | eqcomd |  |-  ( ph -> ( 0 ... ( N - 1 ) ) = ( 0 ..^ N ) ) | 
						
							| 222 | 221 | adantl |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( 0 ... ( N - 1 ) ) = ( 0 ..^ N ) ) | 
						
							| 223 | 220 222 | reseq12d |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ..^ N ) ) ) | 
						
							| 224 | 6 | adantl |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> N = ( # ` F ) ) | 
						
							| 225 | 224 | oveq2d |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( 0 ... N ) = ( 0 ... ( # ` F ) ) ) | 
						
							| 226 | 144 225 | sseqtrid |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( 0 ..^ N ) C_ ( 0 ... ( # ` F ) ) ) | 
						
							| 227 | 226 | resmptd |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ..^ N ) ) = ( x e. ( 0 ..^ N ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) ) | 
						
							| 228 | 223 227 | eqtrd |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) = ( x e. ( 0 ..^ N ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) ) | 
						
							| 229 | 11 228 | eqtr4id |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> Q = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 230 | 229 | adantr |  |-  ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> Q = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 231 | 211 212 230 | 3brtr4d |  |-  ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> H ( EulerPaths ` S ) Q ) | 
						
							| 232 | 197 231 | mpdan |  |-  ( ( -. J = ( N - 1 ) /\ ph ) -> H ( EulerPaths ` S ) Q ) | 
						
							| 233 | 155 232 | pm2.61ian |  |-  ( ph -> H ( EulerPaths ` S ) Q ) |