Step |
Hyp |
Ref |
Expression |
1 |
|
eucrct2eupth1.v |
|- V = ( Vtx ` G ) |
2 |
|
eucrct2eupth1.i |
|- I = ( iEdg ` G ) |
3 |
|
eucrct2eupth1.d |
|- ( ph -> F ( EulerPaths ` G ) P ) |
4 |
|
eucrct2eupth1.c |
|- ( ph -> F ( Circuits ` G ) P ) |
5 |
|
eucrct2eupth1.s |
|- ( Vtx ` S ) = V |
6 |
|
eucrct2eupth.n |
|- ( ph -> N = ( # ` F ) ) |
7 |
|
eucrct2eupth.j |
|- ( ph -> J e. ( 0 ..^ N ) ) |
8 |
|
eucrct2eupth.e |
|- ( ph -> ( iEdg ` S ) = ( I |` ( F " ( ( 0 ..^ N ) \ { J } ) ) ) ) |
9 |
|
eucrct2eupth.k |
|- K = ( J + 1 ) |
10 |
|
eucrct2eupth.h |
|- H = ( ( F cyclShift K ) prefix ( N - 1 ) ) |
11 |
|
eucrct2eupth.q |
|- Q = ( x e. ( 0 ..^ N ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |
12 |
3
|
adantl |
|- ( ( J = ( N - 1 ) /\ ph ) -> F ( EulerPaths ` G ) P ) |
13 |
9
|
eqcomi |
|- ( J + 1 ) = K |
14 |
13
|
oveq2i |
|- ( F cyclShift ( J + 1 ) ) = ( F cyclShift K ) |
15 |
|
oveq1 |
|- ( J = ( N - 1 ) -> ( J + 1 ) = ( ( N - 1 ) + 1 ) ) |
16 |
|
elfzo0 |
|- ( J e. ( 0 ..^ N ) <-> ( J e. NN0 /\ N e. NN /\ J < N ) ) |
17 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
18 |
17
|
3ad2ant2 |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> N e. CC ) |
19 |
16 18
|
sylbi |
|- ( J e. ( 0 ..^ N ) -> N e. CC ) |
20 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
21 |
7 19 20
|
3syl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
22 |
15 21
|
sylan9eq |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( J + 1 ) = N ) |
23 |
22
|
oveq2d |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( F cyclShift ( J + 1 ) ) = ( F cyclShift N ) ) |
24 |
6
|
oveq2d |
|- ( ph -> ( F cyclShift N ) = ( F cyclShift ( # ` F ) ) ) |
25 |
|
crctiswlk |
|- ( F ( Circuits ` G ) P -> F ( Walks ` G ) P ) |
26 |
2
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom I ) |
27 |
25 26
|
syl |
|- ( F ( Circuits ` G ) P -> F e. Word dom I ) |
28 |
4 27
|
syl |
|- ( ph -> F e. Word dom I ) |
29 |
|
cshwn |
|- ( F e. Word dom I -> ( F cyclShift ( # ` F ) ) = F ) |
30 |
28 29
|
syl |
|- ( ph -> ( F cyclShift ( # ` F ) ) = F ) |
31 |
24 30
|
eqtrd |
|- ( ph -> ( F cyclShift N ) = F ) |
32 |
31
|
adantl |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( F cyclShift N ) = F ) |
33 |
23 32
|
eqtrd |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( F cyclShift ( J + 1 ) ) = F ) |
34 |
14 33
|
eqtr3id |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( F cyclShift K ) = F ) |
35 |
|
eqid |
|- ( # ` F ) = ( # ` F ) |
36 |
1 2 4 35
|
crctcshlem1 |
|- ( ph -> ( # ` F ) e. NN0 ) |
37 |
|
fz0sn0fz1 |
|- ( ( # ` F ) e. NN0 -> ( 0 ... ( # ` F ) ) = ( { 0 } u. ( 1 ... ( # ` F ) ) ) ) |
38 |
36 37
|
syl |
|- ( ph -> ( 0 ... ( # ` F ) ) = ( { 0 } u. ( 1 ... ( # ` F ) ) ) ) |
39 |
38
|
eleq2d |
|- ( ph -> ( x e. ( 0 ... ( # ` F ) ) <-> x e. ( { 0 } u. ( 1 ... ( # ` F ) ) ) ) ) |
40 |
|
elun |
|- ( x e. ( { 0 } u. ( 1 ... ( # ` F ) ) ) <-> ( x e. { 0 } \/ x e. ( 1 ... ( # ` F ) ) ) ) |
41 |
39 40
|
bitrdi |
|- ( ph -> ( x e. ( 0 ... ( # ` F ) ) <-> ( x e. { 0 } \/ x e. ( 1 ... ( # ` F ) ) ) ) ) |
42 |
|
elsni |
|- ( x e. { 0 } -> x = 0 ) |
43 |
|
0le0 |
|- 0 <_ 0 |
44 |
42 43
|
eqbrtrdi |
|- ( x e. { 0 } -> x <_ 0 ) |
45 |
44
|
adantl |
|- ( ( ph /\ x e. { 0 } ) -> x <_ 0 ) |
46 |
45
|
iftrued |
|- ( ( ph /\ x e. { 0 } ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` ( x + N ) ) ) |
47 |
6
|
fveq2d |
|- ( ph -> ( P ` N ) = ( P ` ( # ` F ) ) ) |
48 |
|
crctprop |
|- ( F ( Circuits ` G ) P -> ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
49 |
|
simpr |
|- ( ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
50 |
49
|
eqcomd |
|- ( ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P ` ( # ` F ) ) = ( P ` 0 ) ) |
51 |
4 48 50
|
3syl |
|- ( ph -> ( P ` ( # ` F ) ) = ( P ` 0 ) ) |
52 |
47 51
|
eqtrd |
|- ( ph -> ( P ` N ) = ( P ` 0 ) ) |
53 |
52
|
adantr |
|- ( ( ph /\ x = 0 ) -> ( P ` N ) = ( P ` 0 ) ) |
54 |
|
oveq1 |
|- ( x = 0 -> ( x + N ) = ( 0 + N ) ) |
55 |
7 19
|
syl |
|- ( ph -> N e. CC ) |
56 |
55
|
addid2d |
|- ( ph -> ( 0 + N ) = N ) |
57 |
54 56
|
sylan9eqr |
|- ( ( ph /\ x = 0 ) -> ( x + N ) = N ) |
58 |
57
|
fveq2d |
|- ( ( ph /\ x = 0 ) -> ( P ` ( x + N ) ) = ( P ` N ) ) |
59 |
|
fveq2 |
|- ( x = 0 -> ( P ` x ) = ( P ` 0 ) ) |
60 |
59
|
adantl |
|- ( ( ph /\ x = 0 ) -> ( P ` x ) = ( P ` 0 ) ) |
61 |
53 58 60
|
3eqtr4d |
|- ( ( ph /\ x = 0 ) -> ( P ` ( x + N ) ) = ( P ` x ) ) |
62 |
42 61
|
sylan2 |
|- ( ( ph /\ x e. { 0 } ) -> ( P ` ( x + N ) ) = ( P ` x ) ) |
63 |
46 62
|
eqtrd |
|- ( ( ph /\ x e. { 0 } ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` x ) ) |
64 |
63
|
ex |
|- ( ph -> ( x e. { 0 } -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` x ) ) ) |
65 |
|
elfznn |
|- ( x e. ( 1 ... ( # ` F ) ) -> x e. NN ) |
66 |
|
nnnle0 |
|- ( x e. NN -> -. x <_ 0 ) |
67 |
65 66
|
syl |
|- ( x e. ( 1 ... ( # ` F ) ) -> -. x <_ 0 ) |
68 |
67
|
adantl |
|- ( ( ph /\ x e. ( 1 ... ( # ` F ) ) ) -> -. x <_ 0 ) |
69 |
68
|
iffalsed |
|- ( ( ph /\ x e. ( 1 ... ( # ` F ) ) ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` ( ( x + N ) - N ) ) ) |
70 |
65
|
nncnd |
|- ( x e. ( 1 ... ( # ` F ) ) -> x e. CC ) |
71 |
70
|
adantl |
|- ( ( ph /\ x e. ( 1 ... ( # ` F ) ) ) -> x e. CC ) |
72 |
55
|
adantr |
|- ( ( ph /\ x e. ( 1 ... ( # ` F ) ) ) -> N e. CC ) |
73 |
71 72
|
pncand |
|- ( ( ph /\ x e. ( 1 ... ( # ` F ) ) ) -> ( ( x + N ) - N ) = x ) |
74 |
73
|
fveq2d |
|- ( ( ph /\ x e. ( 1 ... ( # ` F ) ) ) -> ( P ` ( ( x + N ) - N ) ) = ( P ` x ) ) |
75 |
69 74
|
eqtrd |
|- ( ( ph /\ x e. ( 1 ... ( # ` F ) ) ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` x ) ) |
76 |
75
|
ex |
|- ( ph -> ( x e. ( 1 ... ( # ` F ) ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` x ) ) ) |
77 |
64 76
|
jaod |
|- ( ph -> ( ( x e. { 0 } \/ x e. ( 1 ... ( # ` F ) ) ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` x ) ) ) |
78 |
41 77
|
sylbid |
|- ( ph -> ( x e. ( 0 ... ( # ` F ) ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` x ) ) ) |
79 |
78
|
imp |
|- ( ( ph /\ x e. ( 0 ... ( # ` F ) ) ) -> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) = ( P ` x ) ) |
80 |
79
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) ) = ( x e. ( 0 ... ( # ` F ) ) |-> ( P ` x ) ) ) |
81 |
80
|
adantl |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) ) = ( x e. ( 0 ... ( # ` F ) ) |-> ( P ` x ) ) ) |
82 |
9
|
oveq2i |
|- ( N - K ) = ( N - ( J + 1 ) ) |
83 |
15
|
oveq2d |
|- ( J = ( N - 1 ) -> ( N - ( J + 1 ) ) = ( N - ( ( N - 1 ) + 1 ) ) ) |
84 |
21
|
oveq2d |
|- ( ph -> ( N - ( ( N - 1 ) + 1 ) ) = ( N - N ) ) |
85 |
55
|
subidd |
|- ( ph -> ( N - N ) = 0 ) |
86 |
84 85
|
eqtrd |
|- ( ph -> ( N - ( ( N - 1 ) + 1 ) ) = 0 ) |
87 |
83 86
|
sylan9eq |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( N - ( J + 1 ) ) = 0 ) |
88 |
82 87
|
eqtrid |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( N - K ) = 0 ) |
89 |
88
|
breq2d |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( x <_ ( N - K ) <-> x <_ 0 ) ) |
90 |
9
|
oveq2i |
|- ( x + K ) = ( x + ( J + 1 ) ) |
91 |
90
|
fveq2i |
|- ( P ` ( x + K ) ) = ( P ` ( x + ( J + 1 ) ) ) |
92 |
15
|
oveq2d |
|- ( J = ( N - 1 ) -> ( x + ( J + 1 ) ) = ( x + ( ( N - 1 ) + 1 ) ) ) |
93 |
21
|
oveq2d |
|- ( ph -> ( x + ( ( N - 1 ) + 1 ) ) = ( x + N ) ) |
94 |
92 93
|
sylan9eq |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( x + ( J + 1 ) ) = ( x + N ) ) |
95 |
94
|
fveq2d |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( P ` ( x + ( J + 1 ) ) ) = ( P ` ( x + N ) ) ) |
96 |
91 95
|
eqtrid |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( P ` ( x + K ) ) = ( P ` ( x + N ) ) ) |
97 |
90
|
oveq1i |
|- ( ( x + K ) - N ) = ( ( x + ( J + 1 ) ) - N ) |
98 |
97
|
fveq2i |
|- ( P ` ( ( x + K ) - N ) ) = ( P ` ( ( x + ( J + 1 ) ) - N ) ) |
99 |
92
|
oveq1d |
|- ( J = ( N - 1 ) -> ( ( x + ( J + 1 ) ) - N ) = ( ( x + ( ( N - 1 ) + 1 ) ) - N ) ) |
100 |
93
|
oveq1d |
|- ( ph -> ( ( x + ( ( N - 1 ) + 1 ) ) - N ) = ( ( x + N ) - N ) ) |
101 |
99 100
|
sylan9eq |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( ( x + ( J + 1 ) ) - N ) = ( ( x + N ) - N ) ) |
102 |
101
|
fveq2d |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( P ` ( ( x + ( J + 1 ) ) - N ) ) = ( P ` ( ( x + N ) - N ) ) ) |
103 |
98 102
|
eqtrid |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( P ` ( ( x + K ) - N ) ) = ( P ` ( ( x + N ) - N ) ) ) |
104 |
89 96 103
|
ifbieq12d |
|- ( ( J = ( N - 1 ) /\ ph ) -> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) = if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) ) |
105 |
104
|
mpteq2dv |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) = ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ 0 , ( P ` ( x + N ) ) , ( P ` ( ( x + N ) - N ) ) ) ) ) |
106 |
4 25
|
syl |
|- ( ph -> F ( Walks ` G ) P ) |
107 |
1
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V ) |
108 |
|
ffn |
|- ( P : ( 0 ... ( # ` F ) ) --> V -> P Fn ( 0 ... ( # ` F ) ) ) |
109 |
106 107 108
|
3syl |
|- ( ph -> P Fn ( 0 ... ( # ` F ) ) ) |
110 |
109
|
adantl |
|- ( ( J = ( N - 1 ) /\ ph ) -> P Fn ( 0 ... ( # ` F ) ) ) |
111 |
|
dffn5 |
|- ( P Fn ( 0 ... ( # ` F ) ) <-> P = ( x e. ( 0 ... ( # ` F ) ) |-> ( P ` x ) ) ) |
112 |
110 111
|
sylib |
|- ( ( J = ( N - 1 ) /\ ph ) -> P = ( x e. ( 0 ... ( # ` F ) ) |-> ( P ` x ) ) ) |
113 |
81 105 112
|
3eqtr4d |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) = P ) |
114 |
12 34 113
|
3brtr4d |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) ) |
115 |
4
|
adantl |
|- ( ( J = ( N - 1 ) /\ ph ) -> F ( Circuits ` G ) P ) |
116 |
115 34 113
|
3brtr4d |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) ) |
117 |
|
elfzolt3 |
|- ( J e. ( 0 ..^ N ) -> 0 < N ) |
118 |
7 117
|
syl |
|- ( ph -> 0 < N ) |
119 |
|
elfzoelz |
|- ( J e. ( 0 ..^ N ) -> J e. ZZ ) |
120 |
7 119
|
syl |
|- ( ph -> J e. ZZ ) |
121 |
120
|
peano2zd |
|- ( ph -> ( J + 1 ) e. ZZ ) |
122 |
9 121
|
eqeltrid |
|- ( ph -> K e. ZZ ) |
123 |
|
cshwlen |
|- ( ( F e. Word dom I /\ K e. ZZ ) -> ( # ` ( F cyclShift K ) ) = ( # ` F ) ) |
124 |
123
|
eqcomd |
|- ( ( F e. Word dom I /\ K e. ZZ ) -> ( # ` F ) = ( # ` ( F cyclShift K ) ) ) |
125 |
28 122 124
|
syl2anc |
|- ( ph -> ( # ` F ) = ( # ` ( F cyclShift K ) ) ) |
126 |
6 125
|
eqtrd |
|- ( ph -> N = ( # ` ( F cyclShift K ) ) ) |
127 |
118 126
|
breqtrd |
|- ( ph -> 0 < ( # ` ( F cyclShift K ) ) ) |
128 |
127
|
adantl |
|- ( ( J = ( N - 1 ) /\ ph ) -> 0 < ( # ` ( F cyclShift K ) ) ) |
129 |
126
|
adantl |
|- ( ( J = ( N - 1 ) /\ ph ) -> N = ( # ` ( F cyclShift K ) ) ) |
130 |
129
|
oveq1d |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( N - 1 ) = ( ( # ` ( F cyclShift K ) ) - 1 ) ) |
131 |
8
|
adantl |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( iEdg ` S ) = ( I |` ( F " ( ( 0 ..^ N ) \ { J } ) ) ) ) |
132 |
28 6 7
|
3jca |
|- ( ph -> ( F e. Word dom I /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) ) |
133 |
132
|
adantl |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( F e. Word dom I /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) ) |
134 |
|
cshimadifsn0 |
|- ( ( F e. Word dom I /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) ) |
135 |
133 134
|
syl |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) ) |
136 |
14
|
imaeq1i |
|- ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) = ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) |
137 |
135 136
|
eqtrdi |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) ) |
138 |
137
|
reseq2d |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( I |` ( F " ( ( 0 ..^ N ) \ { J } ) ) ) = ( I |` ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) ) ) |
139 |
131 138
|
eqtrd |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( iEdg ` S ) = ( I |` ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) ) ) |
140 |
|
eqid |
|- ( ( F cyclShift K ) prefix ( N - 1 ) ) = ( ( F cyclShift K ) prefix ( N - 1 ) ) |
141 |
|
eqid |
|- ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) |
142 |
1 2 114 116 5 128 130 139 140 141
|
eucrct2eupth1 |
|- ( ( J = ( N - 1 ) /\ ph ) -> ( ( F cyclShift K ) prefix ( N - 1 ) ) ( EulerPaths ` S ) ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) |
143 |
10
|
a1i |
|- ( ( J = ( N - 1 ) /\ ph ) -> H = ( ( F cyclShift K ) prefix ( N - 1 ) ) ) |
144 |
|
fzossfz |
|- ( 0 ..^ N ) C_ ( 0 ... N ) |
145 |
6
|
oveq2d |
|- ( ph -> ( 0 ... N ) = ( 0 ... ( # ` F ) ) ) |
146 |
144 145
|
sseqtrid |
|- ( ph -> ( 0 ..^ N ) C_ ( 0 ... ( # ` F ) ) ) |
147 |
146
|
resmptd |
|- ( ph -> ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ..^ N ) ) = ( x e. ( 0 ..^ N ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) ) |
148 |
|
elfzoel2 |
|- ( J e. ( 0 ..^ N ) -> N e. ZZ ) |
149 |
|
fzoval |
|- ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
150 |
7 148 149
|
3syl |
|- ( ph -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
151 |
150
|
reseq2d |
|- ( ph -> ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ..^ N ) ) = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) |
152 |
147 151
|
eqtr3d |
|- ( ph -> ( x e. ( 0 ..^ N ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) |
153 |
11 152
|
eqtrid |
|- ( ph -> Q = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) |
154 |
153
|
adantl |
|- ( ( J = ( N - 1 ) /\ ph ) -> Q = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) |
155 |
142 143 154
|
3brtr4d |
|- ( ( J = ( N - 1 ) /\ ph ) -> H ( EulerPaths ` S ) Q ) |
156 |
4
|
adantl |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> F ( Circuits ` G ) P ) |
157 |
|
peano2nn0 |
|- ( J e. NN0 -> ( J + 1 ) e. NN0 ) |
158 |
157
|
3ad2ant1 |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J + 1 ) e. NN0 ) |
159 |
158
|
adantr |
|- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ -. J = ( N - 1 ) ) -> ( J + 1 ) e. NN0 ) |
160 |
|
simpl2 |
|- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ -. J = ( N - 1 ) ) -> N e. NN ) |
161 |
|
1cnd |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> 1 e. CC ) |
162 |
|
nn0cn |
|- ( J e. NN0 -> J e. CC ) |
163 |
162
|
3ad2ant1 |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> J e. CC ) |
164 |
18 161 163
|
subadd2d |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( ( N - 1 ) = J <-> ( J + 1 ) = N ) ) |
165 |
|
eqcom |
|- ( J = ( N - 1 ) <-> ( N - 1 ) = J ) |
166 |
|
eqcom |
|- ( N = ( J + 1 ) <-> ( J + 1 ) = N ) |
167 |
164 165 166
|
3bitr4g |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J = ( N - 1 ) <-> N = ( J + 1 ) ) ) |
168 |
167
|
necon3bbid |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( -. J = ( N - 1 ) <-> N =/= ( J + 1 ) ) ) |
169 |
157
|
nn0red |
|- ( J e. NN0 -> ( J + 1 ) e. RR ) |
170 |
169
|
3ad2ant1 |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J + 1 ) e. RR ) |
171 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
172 |
171
|
3ad2ant2 |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> N e. RR ) |
173 |
|
nn0z |
|- ( J e. NN0 -> J e. ZZ ) |
174 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
175 |
|
zltp1le |
|- ( ( J e. ZZ /\ N e. ZZ ) -> ( J < N <-> ( J + 1 ) <_ N ) ) |
176 |
173 174 175
|
syl2an |
|- ( ( J e. NN0 /\ N e. NN ) -> ( J < N <-> ( J + 1 ) <_ N ) ) |
177 |
176
|
biimp3a |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J + 1 ) <_ N ) |
178 |
170 172 177
|
leltned |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( ( J + 1 ) < N <-> N =/= ( J + 1 ) ) ) |
179 |
178
|
biimprd |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( N =/= ( J + 1 ) -> ( J + 1 ) < N ) ) |
180 |
168 179
|
sylbid |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( -. J = ( N - 1 ) -> ( J + 1 ) < N ) ) |
181 |
180
|
imp |
|- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ -. J = ( N - 1 ) ) -> ( J + 1 ) < N ) |
182 |
159 160 181
|
3jca |
|- ( ( ( J e. NN0 /\ N e. NN /\ J < N ) /\ -. J = ( N - 1 ) ) -> ( ( J + 1 ) e. NN0 /\ N e. NN /\ ( J + 1 ) < N ) ) |
183 |
182
|
ex |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( -. J = ( N - 1 ) -> ( ( J + 1 ) e. NN0 /\ N e. NN /\ ( J + 1 ) < N ) ) ) |
184 |
16 183
|
sylbi |
|- ( J e. ( 0 ..^ N ) -> ( -. J = ( N - 1 ) -> ( ( J + 1 ) e. NN0 /\ N e. NN /\ ( J + 1 ) < N ) ) ) |
185 |
|
elfzo0 |
|- ( ( J + 1 ) e. ( 0 ..^ N ) <-> ( ( J + 1 ) e. NN0 /\ N e. NN /\ ( J + 1 ) < N ) ) |
186 |
184 185
|
syl6ibr |
|- ( J e. ( 0 ..^ N ) -> ( -. J = ( N - 1 ) -> ( J + 1 ) e. ( 0 ..^ N ) ) ) |
187 |
7 186
|
syl |
|- ( ph -> ( -. J = ( N - 1 ) -> ( J + 1 ) e. ( 0 ..^ N ) ) ) |
188 |
187
|
impcom |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( J + 1 ) e. ( 0 ..^ N ) ) |
189 |
9
|
a1i |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> K = ( J + 1 ) ) |
190 |
6
|
eqcomd |
|- ( ph -> ( # ` F ) = N ) |
191 |
190
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) ) |
192 |
191
|
adantl |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) ) |
193 |
188 189 192
|
3eltr4d |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> K e. ( 0 ..^ ( # ` F ) ) ) |
194 |
|
eqid |
|- ( F cyclShift K ) = ( F cyclShift K ) |
195 |
|
eqid |
|- ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) = ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) |
196 |
3
|
adantl |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> F ( EulerPaths ` G ) P ) |
197 |
1 2 156 35 193 194 195 196
|
eucrctshift |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) |
198 |
|
simprl |
|- ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) |
199 |
|
simprr |
|- ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) |
200 |
127
|
ad2antlr |
|- ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> 0 < ( # ` ( F cyclShift K ) ) ) |
201 |
126
|
oveq1d |
|- ( ph -> ( N - 1 ) = ( ( # ` ( F cyclShift K ) ) - 1 ) ) |
202 |
201
|
ad2antlr |
|- ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> ( N - 1 ) = ( ( # ` ( F cyclShift K ) ) - 1 ) ) |
203 |
8
|
adantl |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( iEdg ` S ) = ( I |` ( F " ( ( 0 ..^ N ) \ { J } ) ) ) ) |
204 |
132
|
adantl |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( F e. Word dom I /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) ) |
205 |
204 134
|
syl |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) ) |
206 |
205 136
|
eqtrdi |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) ) |
207 |
206
|
reseq2d |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( I |` ( F " ( ( 0 ..^ N ) \ { J } ) ) ) = ( I |` ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) ) ) |
208 |
203 207
|
eqtrd |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( iEdg ` S ) = ( I |` ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) ) ) |
209 |
208
|
adantr |
|- ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> ( iEdg ` S ) = ( I |` ( ( F cyclShift K ) " ( 0 ..^ ( N - 1 ) ) ) ) ) |
210 |
|
eqid |
|- ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) |
211 |
1 2 198 199 5 200 202 209 140 210
|
eucrct2eupth1 |
|- ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> ( ( F cyclShift K ) prefix ( N - 1 ) ) ( EulerPaths ` S ) ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) |
212 |
10
|
a1i |
|- ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> H = ( ( F cyclShift K ) prefix ( N - 1 ) ) ) |
213 |
190
|
oveq1d |
|- ( ph -> ( ( # ` F ) - K ) = ( N - K ) ) |
214 |
213
|
breq2d |
|- ( ph -> ( x <_ ( ( # ` F ) - K ) <-> x <_ ( N - K ) ) ) |
215 |
214
|
adantl |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( x <_ ( ( # ` F ) - K ) <-> x <_ ( N - K ) ) ) |
216 |
190
|
oveq2d |
|- ( ph -> ( ( x + K ) - ( # ` F ) ) = ( ( x + K ) - N ) ) |
217 |
216
|
fveq2d |
|- ( ph -> ( P ` ( ( x + K ) - ( # ` F ) ) ) = ( P ` ( ( x + K ) - N ) ) ) |
218 |
217
|
adantl |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( P ` ( ( x + K ) - ( # ` F ) ) ) = ( P ` ( ( x + K ) - N ) ) ) |
219 |
215 218
|
ifbieq2d |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) = if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |
220 |
219
|
mpteq2dv |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) = ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) ) |
221 |
150
|
eqcomd |
|- ( ph -> ( 0 ... ( N - 1 ) ) = ( 0 ..^ N ) ) |
222 |
221
|
adantl |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( 0 ... ( N - 1 ) ) = ( 0 ..^ N ) ) |
223 |
220 222
|
reseq12d |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ..^ N ) ) ) |
224 |
6
|
adantl |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> N = ( # ` F ) ) |
225 |
224
|
oveq2d |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( 0 ... N ) = ( 0 ... ( # ` F ) ) ) |
226 |
144 225
|
sseqtrid |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( 0 ..^ N ) C_ ( 0 ... ( # ` F ) ) ) |
227 |
226
|
resmptd |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) |` ( 0 ..^ N ) ) = ( x e. ( 0 ..^ N ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) ) |
228 |
223 227
|
eqtrd |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) = ( x e. ( 0 ..^ N ) |-> if ( x <_ ( N - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - N ) ) ) ) ) |
229 |
11 228
|
eqtr4id |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> Q = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) |
230 |
229
|
adantr |
|- ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> Q = ( ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) |` ( 0 ... ( N - 1 ) ) ) ) |
231 |
211 212 230
|
3brtr4d |
|- ( ( ( -. J = ( N - 1 ) /\ ph ) /\ ( ( F cyclShift K ) ( EulerPaths ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) /\ ( F cyclShift K ) ( Circuits ` G ) ( x e. ( 0 ... ( # ` F ) ) |-> if ( x <_ ( ( # ` F ) - K ) , ( P ` ( x + K ) ) , ( P ` ( ( x + K ) - ( # ` F ) ) ) ) ) ) ) -> H ( EulerPaths ` S ) Q ) |
232 |
197 231
|
mpdan |
|- ( ( -. J = ( N - 1 ) /\ ph ) -> H ( EulerPaths ` S ) Q ) |
233 |
155 232
|
pm2.61ian |
|- ( ph -> H ( EulerPaths ` S ) Q ) |