Metamath Proof Explorer


Theorem euendfunc2

Description: If there exists a unique endofunctor (a functor from a category to itself) for a category, then it is either initial (empty) or terminal. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion euendfunc2 Could not format assertion : No typesetting found for |- ( ( C Func C ) ~~ 1o -> ( ( Base ` C ) = (/) \/ C e. TermCat ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 euen1b C Func C 1 𝑜 ∃! f f C Func C
2 1 biimpi C Func C 1 𝑜 ∃! f f C Func C
3 2 adantr C Func C 1 𝑜 ¬ Base C = ∃! f f C Func C
4 eqid Base C = Base C
5 simpr C Func C 1 𝑜 ¬ Base C = ¬ Base C =
6 5 neqned C Func C 1 𝑜 ¬ Base C = Base C
7 3 4 6 euendfunc Could not format ( ( ( C Func C ) ~~ 1o /\ -. ( Base ` C ) = (/) ) -> C e. TermCat ) : No typesetting found for |- ( ( ( C Func C ) ~~ 1o /\ -. ( Base ` C ) = (/) ) -> C e. TermCat ) with typecode |-
8 7 ex Could not format ( ( C Func C ) ~~ 1o -> ( -. ( Base ` C ) = (/) -> C e. TermCat ) ) : No typesetting found for |- ( ( C Func C ) ~~ 1o -> ( -. ( Base ` C ) = (/) -> C e. TermCat ) ) with typecode |-
9 8 orrd Could not format ( ( C Func C ) ~~ 1o -> ( ( Base ` C ) = (/) \/ C e. TermCat ) ) : No typesetting found for |- ( ( C Func C ) ~~ 1o -> ( ( Base ` C ) = (/) \/ C e. TermCat ) ) with typecode |-