Metamath Proof Explorer


Theorem eueq2

Description: Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995)

Ref Expression
Hypotheses eueq2.1 A V
eueq2.2 B V
Assertion eueq2 ∃! x φ x = A ¬ φ x = B

Proof

Step Hyp Ref Expression
1 eueq2.1 A V
2 eueq2.2 B V
3 notnot φ ¬ ¬ φ
4 1 eueqi ∃! x x = A
5 euanv ∃! x φ x = A φ ∃! x x = A
6 5 biimpri φ ∃! x x = A ∃! x φ x = A
7 4 6 mpan2 φ ∃! x φ x = A
8 euorv ¬ ¬ φ ∃! x φ x = A ∃! x ¬ φ φ x = A
9 3 7 8 syl2anc φ ∃! x ¬ φ φ x = A
10 orcom ¬ φ φ x = A φ x = A ¬ φ
11 3 bianfd φ ¬ φ ¬ φ x = B
12 11 orbi2d φ φ x = A ¬ φ φ x = A ¬ φ x = B
13 10 12 bitrid φ ¬ φ φ x = A φ x = A ¬ φ x = B
14 13 eubidv φ ∃! x ¬ φ φ x = A ∃! x φ x = A ¬ φ x = B
15 9 14 mpbid φ ∃! x φ x = A ¬ φ x = B
16 2 eueqi ∃! x x = B
17 euanv ∃! x ¬ φ x = B ¬ φ ∃! x x = B
18 17 biimpri ¬ φ ∃! x x = B ∃! x ¬ φ x = B
19 16 18 mpan2 ¬ φ ∃! x ¬ φ x = B
20 euorv ¬ φ ∃! x ¬ φ x = B ∃! x φ ¬ φ x = B
21 19 20 mpdan ¬ φ ∃! x φ ¬ φ x = B
22 id ¬ φ ¬ φ
23 22 bianfd ¬ φ φ φ x = A
24 23 orbi1d ¬ φ φ ¬ φ x = B φ x = A ¬ φ x = B
25 24 eubidv ¬ φ ∃! x φ ¬ φ x = B ∃! x φ x = A ¬ φ x = B
26 21 25 mpbid ¬ φ ∃! x φ x = A ¬ φ x = B
27 15 26 pm2.61i ∃! x φ x = A ¬ φ x = B