Metamath Proof Explorer


Theorem eueq2

Description: Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995)

Ref Expression
Hypotheses eueq2.1 AV
eueq2.2 BV
Assertion eueq2 ∃!xφx=A¬φx=B

Proof

Step Hyp Ref Expression
1 eueq2.1 AV
2 eueq2.2 BV
3 notnot φ¬¬φ
4 1 eueqi ∃!xx=A
5 euanv ∃!xφx=Aφ∃!xx=A
6 5 biimpri φ∃!xx=A∃!xφx=A
7 4 6 mpan2 φ∃!xφx=A
8 euorv ¬¬φ∃!xφx=A∃!x¬φφx=A
9 3 7 8 syl2anc φ∃!x¬φφx=A
10 orcom ¬φφx=Aφx=A¬φ
11 3 bianfd φ¬φ¬φx=B
12 11 orbi2d φφx=A¬φφx=A¬φx=B
13 10 12 bitrid φ¬φφx=Aφx=A¬φx=B
14 13 eubidv φ∃!x¬φφx=A∃!xφx=A¬φx=B
15 9 14 mpbid φ∃!xφx=A¬φx=B
16 2 eueqi ∃!xx=B
17 euanv ∃!x¬φx=B¬φ∃!xx=B
18 17 biimpri ¬φ∃!xx=B∃!x¬φx=B
19 16 18 mpan2 ¬φ∃!x¬φx=B
20 euorv ¬φ∃!x¬φx=B∃!xφ¬φx=B
21 19 20 mpdan ¬φ∃!xφ¬φx=B
22 id ¬φ¬φ
23 22 bianfd ¬φφφx=A
24 23 orbi1d ¬φφ¬φx=Bφx=A¬φx=B
25 24 eubidv ¬φ∃!xφ¬φx=B∃!xφx=A¬φx=B
26 21 25 mpbid ¬φ∃!xφx=A¬φx=B
27 15 26 pm2.61i ∃!xφx=A¬φx=B