| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eueq2.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | eueq2.2 | ⊢ 𝐵  ∈  V | 
						
							| 3 |  | notnot | ⊢ ( 𝜑  →  ¬  ¬  𝜑 ) | 
						
							| 4 | 1 | eueqi | ⊢ ∃! 𝑥 𝑥  =  𝐴 | 
						
							| 5 |  | euanv | ⊢ ( ∃! 𝑥 ( 𝜑  ∧  𝑥  =  𝐴 )  ↔  ( 𝜑  ∧  ∃! 𝑥 𝑥  =  𝐴 ) ) | 
						
							| 6 | 5 | biimpri | ⊢ ( ( 𝜑  ∧  ∃! 𝑥 𝑥  =  𝐴 )  →  ∃! 𝑥 ( 𝜑  ∧  𝑥  =  𝐴 ) ) | 
						
							| 7 | 4 6 | mpan2 | ⊢ ( 𝜑  →  ∃! 𝑥 ( 𝜑  ∧  𝑥  =  𝐴 ) ) | 
						
							| 8 |  | euorv | ⊢ ( ( ¬  ¬  𝜑  ∧  ∃! 𝑥 ( 𝜑  ∧  𝑥  =  𝐴 ) )  →  ∃! 𝑥 ( ¬  𝜑  ∨  ( 𝜑  ∧  𝑥  =  𝐴 ) ) ) | 
						
							| 9 | 3 7 8 | syl2anc | ⊢ ( 𝜑  →  ∃! 𝑥 ( ¬  𝜑  ∨  ( 𝜑  ∧  𝑥  =  𝐴 ) ) ) | 
						
							| 10 |  | orcom | ⊢ ( ( ¬  𝜑  ∨  ( 𝜑  ∧  𝑥  =  𝐴 ) )  ↔  ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ¬  𝜑 ) ) | 
						
							| 11 | 3 | bianfd | ⊢ ( 𝜑  →  ( ¬  𝜑  ↔  ( ¬  𝜑  ∧  𝑥  =  𝐵 ) ) ) | 
						
							| 12 | 11 | orbi2d | ⊢ ( 𝜑  →  ( ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ¬  𝜑 )  ↔  ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  𝜑  ∧  𝑥  =  𝐵 ) ) ) ) | 
						
							| 13 | 10 12 | bitrid | ⊢ ( 𝜑  →  ( ( ¬  𝜑  ∨  ( 𝜑  ∧  𝑥  =  𝐴 ) )  ↔  ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  𝜑  ∧  𝑥  =  𝐵 ) ) ) ) | 
						
							| 14 | 13 | eubidv | ⊢ ( 𝜑  →  ( ∃! 𝑥 ( ¬  𝜑  ∨  ( 𝜑  ∧  𝑥  =  𝐴 ) )  ↔  ∃! 𝑥 ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  𝜑  ∧  𝑥  =  𝐵 ) ) ) ) | 
						
							| 15 | 9 14 | mpbid | ⊢ ( 𝜑  →  ∃! 𝑥 ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  𝜑  ∧  𝑥  =  𝐵 ) ) ) | 
						
							| 16 | 2 | eueqi | ⊢ ∃! 𝑥 𝑥  =  𝐵 | 
						
							| 17 |  | euanv | ⊢ ( ∃! 𝑥 ( ¬  𝜑  ∧  𝑥  =  𝐵 )  ↔  ( ¬  𝜑  ∧  ∃! 𝑥 𝑥  =  𝐵 ) ) | 
						
							| 18 | 17 | biimpri | ⊢ ( ( ¬  𝜑  ∧  ∃! 𝑥 𝑥  =  𝐵 )  →  ∃! 𝑥 ( ¬  𝜑  ∧  𝑥  =  𝐵 ) ) | 
						
							| 19 | 16 18 | mpan2 | ⊢ ( ¬  𝜑  →  ∃! 𝑥 ( ¬  𝜑  ∧  𝑥  =  𝐵 ) ) | 
						
							| 20 |  | euorv | ⊢ ( ( ¬  𝜑  ∧  ∃! 𝑥 ( ¬  𝜑  ∧  𝑥  =  𝐵 ) )  →  ∃! 𝑥 ( 𝜑  ∨  ( ¬  𝜑  ∧  𝑥  =  𝐵 ) ) ) | 
						
							| 21 | 19 20 | mpdan | ⊢ ( ¬  𝜑  →  ∃! 𝑥 ( 𝜑  ∨  ( ¬  𝜑  ∧  𝑥  =  𝐵 ) ) ) | 
						
							| 22 |  | id | ⊢ ( ¬  𝜑  →  ¬  𝜑 ) | 
						
							| 23 | 22 | bianfd | ⊢ ( ¬  𝜑  →  ( 𝜑  ↔  ( 𝜑  ∧  𝑥  =  𝐴 ) ) ) | 
						
							| 24 | 23 | orbi1d | ⊢ ( ¬  𝜑  →  ( ( 𝜑  ∨  ( ¬  𝜑  ∧  𝑥  =  𝐵 ) )  ↔  ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  𝜑  ∧  𝑥  =  𝐵 ) ) ) ) | 
						
							| 25 | 24 | eubidv | ⊢ ( ¬  𝜑  →  ( ∃! 𝑥 ( 𝜑  ∨  ( ¬  𝜑  ∧  𝑥  =  𝐵 ) )  ↔  ∃! 𝑥 ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  𝜑  ∧  𝑥  =  𝐵 ) ) ) ) | 
						
							| 26 | 21 25 | mpbid | ⊢ ( ¬  𝜑  →  ∃! 𝑥 ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  𝜑  ∧  𝑥  =  𝐵 ) ) ) | 
						
							| 27 | 15 26 | pm2.61i | ⊢ ∃! 𝑥 ( ( 𝜑  ∧  𝑥  =  𝐴 )  ∨  ( ¬  𝜑  ∧  𝑥  =  𝐵 ) ) |