| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eueq2.1 |  |-  A e. _V | 
						
							| 2 |  | eueq2.2 |  |-  B e. _V | 
						
							| 3 |  | notnot |  |-  ( ph -> -. -. ph ) | 
						
							| 4 | 1 | eueqi |  |-  E! x x = A | 
						
							| 5 |  | euanv |  |-  ( E! x ( ph /\ x = A ) <-> ( ph /\ E! x x = A ) ) | 
						
							| 6 | 5 | biimpri |  |-  ( ( ph /\ E! x x = A ) -> E! x ( ph /\ x = A ) ) | 
						
							| 7 | 4 6 | mpan2 |  |-  ( ph -> E! x ( ph /\ x = A ) ) | 
						
							| 8 |  | euorv |  |-  ( ( -. -. ph /\ E! x ( ph /\ x = A ) ) -> E! x ( -. ph \/ ( ph /\ x = A ) ) ) | 
						
							| 9 | 3 7 8 | syl2anc |  |-  ( ph -> E! x ( -. ph \/ ( ph /\ x = A ) ) ) | 
						
							| 10 |  | orcom |  |-  ( ( -. ph \/ ( ph /\ x = A ) ) <-> ( ( ph /\ x = A ) \/ -. ph ) ) | 
						
							| 11 | 3 | bianfd |  |-  ( ph -> ( -. ph <-> ( -. ph /\ x = B ) ) ) | 
						
							| 12 | 11 | orbi2d |  |-  ( ph -> ( ( ( ph /\ x = A ) \/ -. ph ) <-> ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) | 
						
							| 13 | 10 12 | bitrid |  |-  ( ph -> ( ( -. ph \/ ( ph /\ x = A ) ) <-> ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) | 
						
							| 14 | 13 | eubidv |  |-  ( ph -> ( E! x ( -. ph \/ ( ph /\ x = A ) ) <-> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) | 
						
							| 15 | 9 14 | mpbid |  |-  ( ph -> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) | 
						
							| 16 | 2 | eueqi |  |-  E! x x = B | 
						
							| 17 |  | euanv |  |-  ( E! x ( -. ph /\ x = B ) <-> ( -. ph /\ E! x x = B ) ) | 
						
							| 18 | 17 | biimpri |  |-  ( ( -. ph /\ E! x x = B ) -> E! x ( -. ph /\ x = B ) ) | 
						
							| 19 | 16 18 | mpan2 |  |-  ( -. ph -> E! x ( -. ph /\ x = B ) ) | 
						
							| 20 |  | euorv |  |-  ( ( -. ph /\ E! x ( -. ph /\ x = B ) ) -> E! x ( ph \/ ( -. ph /\ x = B ) ) ) | 
						
							| 21 | 19 20 | mpdan |  |-  ( -. ph -> E! x ( ph \/ ( -. ph /\ x = B ) ) ) | 
						
							| 22 |  | id |  |-  ( -. ph -> -. ph ) | 
						
							| 23 | 22 | bianfd |  |-  ( -. ph -> ( ph <-> ( ph /\ x = A ) ) ) | 
						
							| 24 | 23 | orbi1d |  |-  ( -. ph -> ( ( ph \/ ( -. ph /\ x = B ) ) <-> ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) | 
						
							| 25 | 24 | eubidv |  |-  ( -. ph -> ( E! x ( ph \/ ( -. ph /\ x = B ) ) <-> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) | 
						
							| 26 | 21 25 | mpbid |  |-  ( -. ph -> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) | 
						
							| 27 | 15 26 | pm2.61i |  |-  E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) |