Metamath Proof Explorer


Theorem eufsn2

Description: There is exactly one function into a singleton, assuming ax-pow and ax-un . Variant of eufsn . If existence is not needed, use mofsn or mofsn2 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Hypotheses eufsn.1 φBW
eufsn.2 φAV
Assertion eufsn2 φ∃!ff:AB

Proof

Step Hyp Ref Expression
1 eufsn.1 φBW
2 eufsn.2 φAV
3 snex BV
4 xpexg AVBVA×BV
5 2 3 4 sylancl φA×BV
6 1 5 eufsnlem φ∃!ff:AB