Description: There is exactly one function into a singleton, assuming ax-pow and ax-un . Variant of eufsn . If existence is not needed, use mofsn or mofsn2 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eufsn.1 | |
|
eufsn.2 | |
||
Assertion | eufsn2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eufsn.1 | |
|
2 | eufsn.2 | |
|
3 | snex | |
|
4 | xpexg | |
|
5 | 2 3 4 | sylancl | |
6 | 1 5 | eufsnlem | |