Metamath Proof Explorer


Theorem eufsnlem

Description: There is exactly one function into a singleton. For a simpler hypothesis, see eufsn assuming ax-rep , or eufsn2 assuming ax-pow and ax-un . (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Hypotheses eufsn.1 φBW
eufsnlem.2 φA×BV
Assertion eufsnlem φ∃!ff:AB

Proof

Step Hyp Ref Expression
1 eufsn.1 φBW
2 eufsnlem.2 φA×BV
3 fconst2g BWf:ABf=A×B
4 1 3 syl φf:ABf=A×B
5 4 alrimiv φff:ABf=A×B
6 eqeq2 g=A×Bf=gf=A×B
7 6 bibi2d g=A×Bf:ABf=gf:ABf=A×B
8 7 albidv g=A×Bff:ABf=gff:ABf=A×B
9 2 5 8 spcedv φgff:ABf=g
10 eu6im gff:ABf=g∃!ff:AB
11 9 10 syl φ∃!ff:AB