Metamath Proof Explorer


Theorem evennodd

Description: An even number is not an odd number. (Contributed by AV, 16-Jun-2020)

Ref Expression
Assertion evennodd ZEven¬ZOdd

Proof

Step Hyp Ref Expression
1 iseven ZEvenZZ2
2 zeo2 ZZ2¬Z+12
3 2 biimpd ZZ2¬Z+12
4 3 imp ZZ2¬Z+12
5 1 4 sylbi ZEven¬Z+12
6 5 olcd ZEven¬Z¬Z+12
7 isodd ZOddZZ+12
8 7 notbii ¬ZOdd¬ZZ+12
9 ianor ¬ZZ+12¬Z¬Z+12
10 8 9 bitri ¬ZOdd¬Z¬Z+12
11 6 10 sylibr ZEven¬ZOdd